$$
\text { 1d) } \begin{aligned}
& \frac{4(x+1)}{5}=\frac{2}{3}(x-6) \\
& {\left[\frac{4}{5}(x+1)\right.}\left.=\frac{2}{3}(x-6)\right] 15 \\
& 12(x+1)=10(x-6) \\
& 12 x+12=10 x-60 \\
&2 c) \quad 4(x+2)^{2}-3=0 \\
& \frac{4(x+2)^{2}}{4}=\frac{3}{4} \\
& \sqrt{(x+2)^{2}}= \pm \sqrt{\frac{3}{4}} \\
& x+2= \pm \frac{\sqrt{3}}{2} \\
& x=-2 \pm \frac{\sqrt{3}}{2}
\end{aligned}
$$

$$
1 \frac{3}{5}\left(\frac{4}{9}\right)=\frac{60}{5}=12
$$

3a) $|x-10|=x^{2}-10 x$
case 1: $\overrightarrow{x-10}=x^{2}-10 x$

$$
0=x^{2}-11 x+10
$$

$$
0=(x-1)(x-10)
$$

cheak
$x=1: 1-d x-9$
x

$$
\begin{aligned}
& \frac{6}{(x-3)(x+3)}=\frac{x+3}{(x+3)(x-3)}-\frac{5(x+3)(x-3)}{(x+3)(x-3)} \\
& 0=(x-10)(x+1) \\
& 6 x+18=(x+3)-5\left(x^{2}-9\right) \\
& 6 x+18=x+3-5 x^{2}+45 \\
& \left(5 x^{2}+5 x-30=0\right) \div 5 \\
& x^{2}+x-6=0 \\
& (x+3)(x-2)=0 \\
& x=3) \quad x=2 \\
& y=(x+1)^{2}-3 \\
& y+3=(x+1)^{2} \\
& \checkmark \text { ertex }(-1,-3)
\end{aligned}
$$

Chapter 1: Function Transformations
1.1 Horizontal and Vertical Transformations

Key words: Copy these definitions from the text pg. 7

- Transformation: a shift on change in shape that is applied to a graph
- Mapping: the relating of one set of points to another as a result of a transformation
- Translation: a slide transformation (cut and paste)
\qquad
- Image point : the point that is the result of a transformation
- Example 1 : page 8

$$
\begin{aligned}
& y=x^{2} \\
& y-2=x^{2} \\
& y=x^{2}+2 \\
& y=(x-3)^{2}
\end{aligned}
$$

$$
y=a(x-h)^{2}+k
$$

- Example 2 : page 9

$$
\begin{aligned}
& \text { Example 2: page } 9 \\
& y=\mid x-4) \mid+3) \text { up 3 } \\
& \text { right } \\
& \text { parent: } y=|x| \\
& \text { mapping notation: }(x, y) \rightarrow(x+4, y+3)
\end{aligned}
$$

- Example 3 : page 10 together in the book

$$
\begin{aligned}
& f(x)=x^{2} \\
& g(x)=(x+4)^{2}- \\
& y=f(x) \\
& y=f(x+4)-5
\end{aligned}
$$

$$
\begin{aligned}
& f(x)=x^{2} \\
& g(x)=(x+4)^{2}-5 \text { or } y+5=(x+4)^{2}
\end{aligned}
$$

HOMEFUN: pg. 12 \#5, 7-11, 17, 19, C4 $\quad(x, y) \rightarrow(x-4, y-5)$

$$
y=(x+h)^{2}
$$

$$
16=(5+h)^{2}
$$

1.2 Reflections and Stretches

- Reflection: produces a mirror image with respect to an axis called axis of reflection. The image is congruent to the original function. Hence, we call reflections and translations isometric transformations.
- Invariant Point: A point that remains unchanged after a transformation. Any point on a curve that lies on the axis of reflections is invariant.

Example 1 : page 18 together
when the output values (y) of a function are multiplied by -1 , the result, $y=-f(x)$, is a reflection of the graph in the x-axis.
when the input values (x) of a function are multiplied by -1 , the result, $y=f(-x)$, is a reflection of the graph in the y -axis.
\checkmark Your turn pg. $20 \longrightarrow f(x)=2 x+2$

- Stretch: A transformation in which the distance of each point from the stretch axis is multiplied by some scale factor. If $0<$ factor <1 the point approaches the stretch axis; if the factor >1 the image is moved further from the stretch axis.

Example 2 : page 21 together
$>$ When the output values (y) are multiplied by a non-zero constant, a, the result is a vertical stretch by a factor of $|a|$ with respect to the x-axis. If $a<0$, there is also a reflection over the x -axis.
\checkmark Your turn pg. 22
Example 3 : page 31 together
> When the input values (x) are multiplied by a non-zero constant, b, the result is a horizontal stretch by a factor of $|1 / b|$ with respect to the y axis. If $b<0$, there is also a reflection over the y -axis.
\checkmark Your turn pg. 24
Example 4 : page 25 together \checkmark Your turn pg. 27

Homefun : pg. 28 \#5-10, 12, 14, C2, C3

$$
\text { Quiz in } 2 \text { days on } 1.1 \sum_{1} 1.2
$$

