1.2 Compound Interest

Compound Interest: the interest earned or paid on both the principal and the accumulated interest

Consider these 2 choices:

1. Ewan invests $\$ 1000000$ in a simple interest GIC for 5 years at 3.6% annually
2. Rena invests $\$ 1000000$ in a compound interest GIC for 5 years at 3.6% annually

Tabulate the value of each investment at the end of each of the 5 years

and of													
simple							$	$	year 1	year 2	year 3	year 4	year 5
:---	:---	:---	:---	:---									
total $\longrightarrow 1036000$	1072000	1108000	1144000	1180000									

compound	year 1	year 2	year 3	year 4	year 5
terest \longrightarrow	36000	37296	38638.66	40029.65	41470.72
total \longrightarrow	1036000	1073296)111934,66	1151964.31	1193435.04

* Rena earns $\$ 13435.04$ more money with compounded interest

Ex// Which investment will generate the largest return (increase in value) and rate of return (percentage of investment)?

1. $\$ 6000$ for 4 years @ 1.2% compounded annually
2. $\$ 5000$ for 5 years @ 5% compounded annually
3. $\$ 4000$ for 6 years @ 6% compounded annually
4. $\begin{aligned} F V & =P(1+r)^{t} \quad \phi \\ & =6000(1+0.0 R)^{4} \quad \Rightarrow R O R=\frac{293.23}{6000}\end{aligned}$ $=6000(1+0.0 R) \quad \$ \quad=0.04887 \ldots$
$\begin{array}{rlrl}F V=6293.23 \Rightarrow I=293.23 & & =0.0488 \\ & =4.89 \%\end{array}$
5. $\begin{aligned} F V & =5000(1+0.05)^{5} \\ & =6381.41 \Rightarrow I=1381.41^{\phi} \Rightarrow R_{0} R=\frac{1381.41}{5000}=27.63 \%\end{aligned}$
6. $\begin{aligned} F V & =4000(1+0.06)^{6} \\ & =5674.08 \Rightarrow I=1674.08 \Rightarrow R \times R=\frac{1674.88}{4000}=41.852 \%\end{aligned}$

Homework: pg. 19 \#1, 2 AND

1. Which generates a better rate of return?
a) $\$ 8000$ invested over 10 years @ 4.5\% compounded annually
b) $\$ 10000$ invested over 8 years @ 5.5% compounded annually
2. What interest rate is needed to grow $\$ 10000$ into $\$ 10506.25$ over 2 years if the investment is compounded annually?

Answers

1. a) is $\$ 4423.76$ with a rate of return of 55.29%, b) is $\$ 5346.87$ with a rate of return of 53.47%
2. 2.5%
