Les formules de Lewis des ions

Dans une formule de Lewis comme celle de la figure 4.13, les ions sont représentés selon les règles suivantes:

- Dans le cas des ions positifs, on supprime un point (électron) de la couche de valence pour chaque charge positive de l'ion. En général, cela signifie que tous les points (électrons) sont supprimés. Seul le symbole de l'élément est présenté entre crochets, et sa charge positive est indiquée au-dessus du crochet de droite.
- Dans le cas des ions négatifs, on ajoute un point (électron) dans la couche de valence pour chaque charge négative de l'ion. En général, cela signifie que le symbole de l'élément est entouré de huit points (électrons), mais deux points pour l'hydrogène. Le symbole de l'élément est placé entre crochets, et sa charge négative apparait au-dessus du crochet de droite.

Figure 4.13 La formule de Lewis montrant la formation de NaCl

Les formules de Lewis des composés

Les formules de Lewis peuvent illustrer des liaisons ioniques. La figure 4.14 en montre deux exemples.

Figure 4.14 Des formules de Lewis représentant l'oxyde de magnésium (MgO) et le bromure de baryum (BaBr_{2}). L'absence de points (électrons) autour de Mg et de Ba signifie que la couche précédente est saturée. On pourrait l'indiquer en traçant huit points autour de Mg et de Ba , ce qui n'a pas été fait parce que ces huit électrons sont absents de la couche de valence.

Les formules de Lewis permettent aussi de représenter des liaisons covalentes. La figure 4.15 montre le composé covalent HF.

Ce trait représente le doublet d'électrons que partagent les atomes.

Figure 4.15 L'électron de l'atome d'hydrogène et l'électron libre de l'atome de fluor s'associent pour former la molécule HF. Remarque que l'hydrogène a deux doublets d'électrons (dans une couche saturée ressemblant à celle du gaz noble hélium). De plus, le fluor a quatre doublets d'électrons (dans une couche saturée ressemblant à celle du gaz noble néon).

Les formules de Lewis des molécules convalentes

La figure 4.16 ci-dessous illustre les molécules covalentes $\mathrm{H}_{2} \mathrm{O}, \mathrm{NH}_{3}$ et CH_{4}. Compare cette illustration aux schémas de Bohr, plus complexes, de la figure 4.10 , à la page 177
CH_{4}

Figure 4.16 Les formules de Lewis de $\mathrm{H}_{2} \mathrm{O}$, de NH_{3} et de CH_{4}

Les formules de Lewis des molécules diatomiques

Les formules de Lewis permettent d'expliquer pourquoi certains nonmétaux existent sous forme de molécules diatomiques. Une molécule diatomique est une paire d'atomes du même élément qui forment une liaison covalente. Les molécules diatomiques se forment ainsi parce que les molécules à deux atomes sont plus stables que les atomes individuels. Par exemple, le fluor est un gaz diatomique. Quand deux atomes de fluor se lient pour former F_{2}, chacun acquiert une couche de valence saturée contenant huit électrons (voir la figure 4.17). L'hydrogène $\left(\mathrm{H}_{2}\right)$, l'azote $\left(\mathrm{N}_{2}\right)$, l'oxygène $\left(\mathrm{O}_{2}\right)$, le chlore $\left(\mathrm{Cl}_{2}\right)$, le brome $\left(\operatorname{Br}_{2}\right)$ et l'iode $\left(\mathrm{I}_{2}\right)$ sont d'autres molécules diatomiques.

Figure 4.17 Deux atomes de fluor partagent une paire d'électrons pour former une liaison covalente. Remarque que chaque atome acquiert ainsi un octet stable.

Pratique: pg. 29-30, 31(\#1, 2),

Pratique

1. Dessine les formules de Lewis des composés ioniques
a) $\mathrm{Na} F$
b) $\mathrm{BeCl} / 2$
c) $\mathrm{Li}_{2} \mathrm{O}$

$$
[\mathrm{Na}]+\{\ddot{\because \because}:]^{-}
$$

$$
[\mathrm{Be}]^{2+}\left[: \ddot{\mathrm{C}}_{0}\right]^{-}[: \ddot{\mathrm{Cl}} .4]^{-}
$$

$$
\left[\mathrm{Li}^{+}\right]^{+}\left[\mathrm{Li}^{2}\right]^{+}\left[: \ddot{0}_{0}:\right]^{2-}
$$

2. Dessine les formules de hewis des compose's maléculairin/
a) CH_{4}
b) $O F_{2}$
covalents

c) F_{2}
d) H_{2}
e) NH_{3}
$\mathrm{H}-\mathrm{H}$

3. Quand on dessine le modile de Lewis d'un composé moléculaive, on utilise des doublets liants (bras de partage). Combien y a-t-il de doublets liants pour OF2? 2 doublets liants
NH_{3} ?

Dessine selon le schéma de hewis

i) Conbien de doubles non-liants poere NH_{3} ? I dovole non-liants 30)

Consolidation des composés ioniques et moléculaires (covalents)

1. Complète la formule du composé ionique et/ou le nom du composé. Inscris la charge de chaque ion dans les 2 cas.

Nom du composé ionique	Charge des ions	Formule
1. carbonate de calcium	$\mathrm{Ca}^{2+\quad \mathrm{CO}_{3}{ }^{2+}}$	CaCO_{3}
2. hydroxyde de zinc	$\mathrm{Zn}^{2+} \mathrm{OH}^{-}$	$\mathrm{Zn} \mathrm{(OH})_{2}$
3. iodure de molybdène (V)	$\mathrm{MO}^{5+} 1^{-}$	Mols
4. carbonate de chrome (IIJ)	$\mathrm{Cr}^{3+} \mathrm{CO}_{3}{ }^{2-}$	$\mathrm{Cr}_{2}\left(\mathrm{CO}_{3}\right)_{3}$

2. Ecris la formule du composé covalent (moléculaire) ou le nom selon le cas.
** N'oublie pas de vérifier les molécules diatomiques ou autres (clown)

Formule	Nom
a) FO	Monoxyde de fluor
b) NH_{3}	trihydrure d'azote
c) $\mathrm{P}_{2} \mathrm{O}_{5}$	pentaoxy de de diphosphere d) F_{2}
e) SiF_{4}	tétrafluor

4. (a) Dessine un diagramme de Lewis qui représente l'ammoniac $\left(\mathrm{NH}_{3}\right)$.

(b) Dessine un diagramme de Lewis qui représente MgCl_{2}.

$$
[M g]^{2+}[: \ddot{C} \dot{i}:]^{-}[: \ddot{\mathrm{C}}: \cdot]^{-}
$$

(c) Lequel des diagrammes (a) ou (b) à des doublets liants? Combien y en a-t-il?
a) il y a 3
5. Identifie si c'est une liaison ionique ou covalente. Ensuite, écris la formule ou le nom pour les composés suivants.

	formule		
$\mathrm{Na}^{+} \mathrm{SO}_{4}{ }^{2-}$			
	${ }^{\text {a. }} \mathrm{FeCl}_{3}$		chlorure de fer(III)
	b. $\mathrm{P}_{4} \mathrm{O}_{10}$	ionique	
	c. $\mathrm{Na}_{2} \mathrm{SO}_{4}$	covalent	decaoxyde de tétraphosphore
	d.	ionique	Sulfate de sodium
	e. $C^{\text {S }}$ 2	covalent	Bisulfure de carbone
	${ }^{\text {e. }} \mathrm{O}_{2}$	covalent	Oxygène
	f. $\mathrm{N}_{2} \mathrm{O}_{3}$		
	g. SeF_{6}	covalent	trioxyde de diazote
	h .	Covalent	hexafluorure de sélénium
	i. N_{3}	covalent	Triodure d'azote
	${ }^{1}{ }^{\text {i }} \mathrm{S}_{8}$	covalent	Soufre
	j. $\mathrm{NH}_{4} \mathrm{PO}_{4}$	ionique	phosphate d'ammonium
	k. $N_{2} p_{3}$		
	l. N_{2}	covalent	triphosphure de diazote
		covalent	azote
	${ }^{\text {n. }} \mathrm{KBr}$	ionique	bromb
	n. $\mathrm{H}_{2} \mathrm{Se}$	covalent	
			iniseleniure de dihydrogene

