Unit 2: Kinematics
 2.1 Introduction and Vectors

Kinematics: the study of motion.
Scalars: quantities that are specified by a value (magnitude) only and no direction.
ex. time, mass, volume, age, pressure, height...
speed
Vectors: are quantities that are specified by both magnitude and direction.
ex. Velocity $\rightarrow 120 \mathrm{~km} / \mathrm{h}[N]$

$$
\text { displacement } \rightarrow 127 \mathrm{~m}\left[\mathrm{~N} 15^{\circ} \mathrm{E}\right]
$$

Distance: is a measure of the total travel of the object regardless of direction.
Displacement: is the NET travel of an object as measured from start to finish AND requires a direction.

Velocity: is speed with direction ... it is a vector quantity while speed is scalar.

Position: is a displacement from a given origin. It is a vector quantity. Think of the cartesian coordinate system.

As a convention, we make [North] and [East] positive, and [South] and [West] negative. In space, we call [up] and [right] positive and the opposites negative. However, any direction can be established as positive as long as it is stated somewhere and adhered to for all measurements.
Time Interval: $\quad \Delta t=t_{f}-t_{i} \quad$ or final time - initial time
in math we see $\quad \Delta x=x_{2}-x_{1} \quad$ same idea

$$
\text { A is greek for } d=\text { difference }
$$

Displacement: $\quad \Delta \vec{d}=\vec{d}_{f}-\vec{d}_{i}$ or final position -initial position - indicates a vector quantity

Average Speed: $\quad v=d / \Delta t \quad$ or total distance / total time Average Velocity: $\vec{v}=\Delta \vec{d} / \Delta t \quad$ or change in displacement / change in time
ex. Gru is looking for supervilain Vector. He drives North 9 km then turns East for 4 km then heads south for 6 km where he traps him in a dead end. The chase lasts 12 minutes. Determine the distance, displacement, average speed and average velocity of Gro during the chase.

$$
V_{\text {aug }}=\frac{d}{\Delta t}
$$

$$
=19 \mathrm{~km} \cdot 60 \mathrm{mk}
$$

$$
V_{\text {avg }}=95 \mathrm{kn} / \mathrm{hr}
$$

$$
\begin{array}{r}
\vec{V}=\frac{\vec{d}}{\Delta t}=\frac{5 \mathrm{~km}\left[N 53^{\circ} \mathrm{E}\right]}{12 \mathrm{msin}} \cdot \frac{6 \mathrm{~m} \mathrm{~m}}{\mathrm{hr}} \\
\vec{V}=25 \mathrm{~km} / \mathrm{hr}\left[N 53^{\circ} \mathrm{E}\right]
\end{array}
$$

Vector Properties: When adding vectors, place them tip to tail to find the resultant vector
ex.

$=$

A vector can become negative by reversing its direction.
So to subtract vector \vec{b} from vector \vec{a}, we could add $\vec{a}+(-\vec{b})=\vec{a}-\vec{b}$

practice: Scalar and Vector worksheet طttps://www.physicsclassroom.com/Physics-Interactives/Vectors-and-Projectiles/Vector-A

