Travail sur l'énergie cinétique et potentielle
Écris les données incluant ce que tu cherches, montre ton travail et assure-toi que tu as l'unité appropriée dans ta réponse.

1. Un rocher de 45 kg est placé sur une falaise haute de 125 m . Quelle est l'énergie potentielle gravitationnelle du bloc par rapport au fond de la falaise?

$$
\begin{array}{rlrl}
m=45 \mathrm{~kg} & =125 \mathrm{~m} & E_{\infty} & =(45)(125)(9.8) \\
& =55125 \mathrm{~J} \div 55 \mathrm{kj}
\end{array}
$$

2. Deux alpinistes de la même massegravissent une falaise. Un s'arrête pour se reposer à 50 m du sol. L'autre grimpeur s'arrête à 25 m du sol.
a. Lequel a le plus d'énergie potentielle gravitationnelle? Utilise les valeurs numériques pour appuyer ta réponse.

$$
\begin{aligned}
& \text { Mplus } E_{p}=m g h \longrightarrow E_{p}=m g h \\
& \text { d'energy }=m(9.8)(50)=m^{\prime}(9.8)(25) \\
& =490 \mathrm{~m}_{\mathrm{R} 2 \text { fois }}=245 \mathrm{~m} \text { Jorles }
\end{aligned}
$$

b. Les alpinistes auraient-ils plus ou moins d'énergie potentielle gravitationnelle s'ils gravissaient une falaise sur la Lune? Pourquoi? Utilise des valeurs numériques pour appuyer ta réponse sachant que $g=1.6 \mathrm{~m} / \mathrm{s}^{2}$
mains

$$
\begin{aligned}
E_{p} & =m g h \\
& =m(1.6)(50) \\
& =80 \mathrm{~m} \text { joules }
\end{aligned}
$$

$\frac{9.8}{1.6}$

3. Un skieur de 54 kg , matériel compris, se tient au sommet d'une piste de ski en losange noir. La distance verticale au bas de la piste est de 420 m .
a. Quelle est l'énergie potentielle gravitationnelle du skieur par rapport au bas de la piste?

$$
\begin{aligned}
E_{p} & =(54)(9.8)(420) \\
& =222264 \mathrm{~J} \\
& =222 \mathrm{~kJ}
\end{aligned}
$$

b. Son jumeau, qui a la même masse, se tient à la même place mais il décide de descendre la pente débutante. A-t-il la même énergie potentielle gravitationnelle?

$$
\begin{aligned}
& \text { Oni, si leur masse sont } \\
& \text { identique ainsi que lem évation. }
\end{aligned}
$$

4. Une boule de bowling descend la piste à $2,8 \mathrm{~m} / \mathrm{s}$. Si elle a une énergie cinétique de $25,5 \mathrm{~J}$, quelle est sa masse?
5. Un satellite pèse 689 kg et se déplace à une vitesse de $27000 \mathrm{~km} / \mathrm{h}(7500 \mathrm{~m} / \mathrm{s})$. Quelle est l'énergie cinétique du satellite?
6. Un original a une masse de 300 kg et 100000 J d'énergie mécanique cinétique. Quelle est la vitesse de l'orignal?
7. Quelle est l'énergie potentielle gravitationnelle d'une boîte de 5 kg qui est soulevée à 3 m au-dessus du plancher?
8. Une personne de 70 kg est sur une motocyclette de 200 kg qui roule à $20 \mathrm{~m} / \mathrm{s}$. Quelle est l'énergie cinétique totale?
9. Deux voitures roulent à la même vitesse, mais l'une a deux fois la masse de l'autre. L'énergie cinétique mécanique de la grande voiture est-elle deux fois, trois fois ou quatre fois celle de la petite voiture? Utilise des valeurs numériques fictives pour appuyer ta réponse.
10. Vous skiez à l'école et réalisez que vous êtes en retard. Si vous doublez votre vitesse, de quel facteur votre énergie cinétique mécanique augmenterait-elle? Utilise des valeurs numériques fictives pour appuyer ta réponse.

4 fois

11. Une boite est suspendue d'une grue à une hauteur de 32 m au-dessus du sol. La boite a 7840 J d'énergie potentielle gravitationnelle.
a) Quelle est la masse de la boite?
b) Si la boite tombe de cette hauteur, quelle serait la vitesse juste avant que la boite frappe le sol?

Comprendre la conversion de l'énergie
Une balle de 1 kg est relâchée d'un point surélevé, sans friction.

1. Remplis le diagramme à bandes dessous pour représenter l'énergie cinétique, l'énergie potentielle et l'énergie mécanique. Chaque carré du diagramme à barres représente 10 J d'énergie.

2. Explique ce qui se produit avec l'énergie du système quand la balle se déplace entre chaque point.
a) Du point Aà B une partie de son Ep se transforme en $E_{c} \Rightarrow E_{m}=E_{c}+E_{p}$
b) Du point B à C Le restant de son Ep est tranoformé en $E_{c} \Rightarrow E_{m}=E_{c}$
c) Du point C à D Une partie de son E_{c}
$E_{p} \Rightarrow E_{m}=E_{p}+E_{c}$

Labo \#5 : La montagne russe

Objectif : Comprendre comment l'énergie gravitationnelle potentielle, l'énergie cinétique et l'énergie mécanique sont reliées.

1. Un chariot de montagne russe d'une masse de 800 kg est stationnaire en haut du trajet à une hauteur de 75 m . Quand le frein est relâché, le charriot commence à descendre la pente.

a) Pour chaque hauteur indiquée sur le diagramme, calcule l'énergie gravitationnelle potentielle. Montre ton travail pour les hauteurs suivantes : à 75 m et à 60 m . Ensuite, complète le tableau.
$\underline{\underline{h}=75 \mathrm{~m} \quad E_{p}=(800 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(75 \mathrm{~m})}$ $=588000 \mathrm{~J}=588 \mathrm{~kJ}$
$\underline{\underline{h}}=60 \mathrm{~m}$

b) Si on considère qu'il n'y a pas de friction, détermine l'énergie cinétique et calcule la vitesse à chaque hauteur de la montagne russe. Montre ton travail pour les hauteurs suivantes : à 75 m et à 60 m . Ensuite, complète le tableau.
$\underline{\underline{h}}=75 \mathrm{~m}$
 pas de vitesse
$h=60 \mathrm{~m}\left\{\begin{aligned} E_{c} & =E_{m}-E_{p} \\ & =588000-470400 \\ & =117600 \mathrm{~J}\end{aligned} \quad \Rightarrow \sqrt{\frac{E_{c}}{\frac{1}{2} m}=\frac{V_{2}^{2} m v^{2}}{\frac{1}{2} m}} \begin{array}{r}v=\sqrt{\frac{117600}{\frac{1}{2}(800)}}=17.1 \mathrm{~m} / \mathrm{s}\end{array}\right.$

devoirs ... termine "La montagne Russe"

$$
\text { et \# } \# 4-11
$$

Analyse

1. Que peux-tu dire de l'énergie mécanique?
2. À quel moment est-ce que le chariot a la valeur maximale pour :
a. l'énergie gravitationnelle potentielle
b. l'énergie cinétique
c. la vitesse

Conclusion

Rappelle-toi de l'objectif: Comment est-ce que l'énergie gravitationnelle potentielle, l'énergie cinétique et l'énergie mécanique sont reliées?

