2.6 Projectile Motion (part 2)

If an object is launched at an angle, the flight path, or trajectory is affected by the launch angle. To determine how the projectile behaves, we must resolve the launch velocity into horizontal and vertical component velocities. This is when simple trig is useful. We must resolve a vector into it's vertical and horizontal components.
ex. A football is thrown with an initial velocity of $35 \mathrm{~m} / \mathrm{s}$ at an angle of 20°.
a) What are the horizontal and vertical components of the velocity vector?

x-values $\cos 20^{\circ}=\frac{\vec{V}_{1 x}}{35}$

$$
\begin{aligned}
& \vec{V}_{1 y}=35 \sin 20^{\circ} \\
& \rightarrow \\
& \rightarrow=12 \mathrm{~m} / \mathrm{s}[\mathrm{up}] \\
& V_{1 y}=\vec{v} \sin \theta \\
& V_{y}=
\end{aligned}
$$

$$
\vec{V}_{1 x}=35 \cos 20^{\circ}
$$

$$
\vec{V}_{1 x} \doteq 33 \mathrm{~m} / \mathrm{s}[\mathrm{r}, \mathrm{ght}]
$$

b) What is the football's max height

$$
\vec{V}_{2 y}=0 \mathrm{~m} / \mathrm{s}
$$

$$
\vec{a}_{y}=-9.8 \mathrm{~m} / \mathrm{s}^{2}
$$

$$
\text { (5) } \vec{v}_{2}^{2}=\vec{v}_{1}^{2}+2 \vec{a} \Delta \vec{d}
$$

$$
\begin{aligned}
& \frac{\vec{v}_{2}^{2}-\vec{v}_{1}^{2}}{2 \vec{a}}=\Delta \vec{d}_{y} \\
& \frac{-(12)^{2}}{2(-9.8)}=\Delta \vec{d}_{y} \\
& \Delta \vec{d}_{y}=7.35 \mathrm{~m}\left[u_{p}\right]
\end{aligned}
$$

given: $\vec{v}_{1 y}=12 \mathrm{~m} / \mathrm{s}$

$$
\Delta \hat{d}_{y}=?
$$

c) How far away does the football land?

RTE

what do you think is the optimal launch angle? \Rightarrow launch angle $=45^{\circ}$

//www.physicsclassroom.com/Physics-Interactives/Vectors-and-Projectiles/Projectile-Simulator/Projectile-Simulator-Interactive
ex. What is the maximum distance a baseball can be hit horizontally if it's speed off the bat is $70.7 \mathrm{~m} / \mathrm{s}$
\rightarrow ned

> st : use eqwn

$70.7 \mathrm{~m} / \mathrm{s}$
$\vec{V}=70$
$\vec{y}_{24}^{0}=\vec{v}_{1 y}+\vec{a}_{y} \Delta t$
$\frac{-\vec{v}_{1 y}}{\vec{a}_{y}}=\Delta t=\frac{-(50)}{-9.8}=5.10 \mathrm{~s}$
\therefore total $\Delta t=5.10 \times 2=10.20$
$\vec{V}_{1 y}=70.7 \sin 45^{\circ}$
$=50 \mathrm{~m} / \mathrm{s}$
$=50$

ARedbull Rampage event has cyclists hitting a jump with a takeoff angle of -7.5° to the horizontal. The feature has a step-down distance of 5.1 metres and the riders know from experience that in order to be successful on this feature, an initial velocity of $12 \mathrm{~m} / \mathrm{s}$ is required. How far, horizontally and vertically will the riders land?

$\vec{V}_{1 y}=\vec{V} \sin \theta$

$$
\begin{aligned}
\vec{v}_{x} & =\vec{v} \cos \theta \\
& =(12)\left(\cos -7.5^{\circ}\right) \\
\vec{v}_{x} & =11.90 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

$\operatorname{lin} k x: y$ directions
with Δt

$$
\text { use (3): } \Delta \vec{d}=\vec{v} \cdot \Delta t+\frac{1}{2} a \Delta t^{2}
$$

$$
-5.1=(-1.566) \Delta t+\frac{1}{2}(-9.8) \Delta t^{2}
$$

$$
\begin{aligned}
\text { given } \Rightarrow \vec{v}_{1 y} & =-1.566 \mathrm{~m} / \mathrm{s} \\
\vec{a} y & =-9.8 \mathrm{~m} / \mathrm{s}^{2} \\
\Delta \vec{d}_{y} & =-5.1 \mathrm{~m} \\
\Delta t & =?
\end{aligned}
$$

$$
4.9 \Delta t^{2}+1.566 \Delta t-5.1=0 \quad(a=4.9 ; b=1.566 ; c=-5.1)
$$

$$
\left.\begin{array}{l}
\text { Quadratic } \\
\text { formula }
\end{array}\right\} s t=\frac{-(1.566) \pm \sqrt{(1.566)^{2}-4(4.9)(-5.1)}}{2(4.9)}
$$

ignoring $=\frac{-1.566 * 10.120}{9.8}$
$\Delta t=8.87285 .5$
find $\Delta \vec{d}_{x}$ using \vec{V}_{x} and $\Delta t: \quad \Delta d x=\vec{V}_{x} \Delta t$ $=(11.90)(0.87285)$
$\begin{aligned} & =10.39 \mathrm{mor} \\ \text { or } & 1.0 \times 10^{6} \mathrm{~m}\end{aligned}$
"The rider travels about
10 m horizontally

Table 2.1 The Five Equations of Linear Kinematics						
No.	Equation	$\Delta \vec{d}$	(${ }_{\text {a }}$	\vec{v}_{2}	\vec{v}_{1}	Δt
1	$\vec{v}_{2}=\vec{v}_{1}+\vec{a} \Delta t$		\checkmark	\checkmark	\checkmark	\checkmark
2	$\Delta \vec{d}=\frac{1}{2}\left(\vec{v}_{2}+\vec{v}_{1}\right) \Delta t$	\checkmark		\checkmark	\checkmark	\checkmark
3	$\Delta \vec{d}=\vec{v}_{1} \Delta t+\frac{1}{2} \vec{a} \Delta t^{2}$	\checkmark	\checkmark		\checkmark	\checkmark
4	$\Delta \vec{d}=\vec{v}_{2} \Delta t-\frac{1}{2} \vec{a} \Delta t^{2}$	\checkmark	\checkmark	\checkmark		\checkmark
5	$\vec{v}_{2}^{2}=\vec{v}_{1}^{2}+2 \vec{a} \Delta \vec{d}$	\checkmark	\checkmark	\checkmark	\checkmark	

Practice: pg. 113 \#29-33
Quiz Tomorrow: 2.5 Equations of Motions

Fig.3.16 Solving Projectile Problems

