Unit 3: Dynamics

3.1 Newton's Laws

Dynamics: the study of the forces that cause change in a system.
A force is a push or a pull exerted on an object. Forces can cause objects to speed up , slow down , or change direction as they move.

Newton's Laws

1st: An object at rest will remain at rest and an object travelling at a constant velocity will continue travelling at a constant velocity unless acted upon by an unbalanced force.
ex. A car accelerates around a corner and encounters ice. When the car loses grip the car travels... in a line tangent to the curve where splippage occurred
ex. The old table cloth trick... the objects want to stay
at rest

2nd: The acceleration of an object is inversely proportional to its mass and directly proportional to the unbalanced force applied to it. It should be noted that Force is a vector.

From above we know that...

Note: one Newton is about equal to the force of gravity on an apple.
In the End law, we are always referring to $\vec{F}_{\text {net }}$, the overall force on an object.

ex. A slingshot imparts a 10 N force on a 10 gram stone. What is the stones acceleration?

$$
\begin{array}{ll}
\vec{F}_{n e}=10 \mathrm{~N} \\
m=10 \mathrm{~g}=0.01 \mathrm{~kg} & \frac{1}{m} \\
\vec{a}=\frac{10 \mathrm{~N}}{0.01 \mathrm{~kg}}
\end{array}
$$

$$
\vec{a}=1000 \mathrm{~m} / \mathrm{s}^{2}\left[\begin{array}{l}
\mathrm{M} \text { the direction } \\
\text { of the applied } \\
\text { scarce }
\end{array}\right]
$$

$$
\begin{aligned}
& \text { M the applied } \\
& \text { of the appliance }
\end{aligned}
$$

Ex. A Formula -1 race car can do 0 to $100 \mathrm{~km} / \mathrm{h}$ in 2.5 seconds. If the car and driver weigh 800 kg , what if the net force delivered by the car? [for ward]

$$
\text { given: } \begin{aligned}
\vec{v}_{1} & =0 \\
\vec{v}_{2} & =100 \mathrm{~km} / \mathrm{h} \\
& =27 . \overline{7} \mathrm{~m} / \mathrm{s} \\
\Delta t & =2.5 \mathrm{sec} \\
m & =880 \mathrm{~kg}
\end{aligned}
$$

$$
\vec{a}=\frac{\Delta \vec{v}}{\Delta t}
$$

$$
=\frac{27 . \overline{7}-0}{2.55}
$$

$$
=11 . T \mathrm{~m} / \mathrm{s}^{2}
$$

$$
\text { Now: } \begin{aligned}
\vec{F} & =m \vec{a} \\
& =(800 \mathrm{k}
\end{aligned}
$$

$$
\vec{a} \mathrm{~kg})\left(11.1 \mathrm{~m} / \mathrm{s}^{2}\right)
$$

$$
=8888 . \overline{8} \mathrm{~N}
$$

3rd: For every action, there is an equal and opposite reaction

