3.2 Perfect Squares, Perfect Cubes and Their Roots

rational # (fraction)

*If a number can be represented as the area of a square whereby the sides of the square are whole numbers, we call the number a perfect square.

Ex. $\sqrt{81} = 9$... 81 is a perfect square

*100 is a perfect square but 100 = $10 \cdot 10 = 2 \cdot 5 \cdot 2 \cdot 5 = 2^2 \cdot 5^2$

Note: all prime factors of a perfect square have even powers.

Ex. 324 =

$$324 = 2 \cdot 3$$

$$324 = 2 \cdot 3$$

*
$$\sqrt{x} = x^{1/2}$$

$$\sqrt{x^{b}} = x^{3}$$

*If a number can be represented as the volume of a cube whereby the sides of the cube are whole numbers, we call the number a perfect cube.

radical

ex. consider $125 = 5^3$

Note: all prime factors of a perfect cube have powers that are multiples of 3

Nex (3) 125) = 5 radicand

ex

$$3.1728 = 2.3$$

$$= 2^{3}.3$$

$$= (2)$$

ex. Make up a number that is a perfect square AND a perfect cube at the same time

3 = 700

3/729=9

Homefun: Pg. 146 #(4-18)ace