3.3 Common Factors of Polynomials (part 1)

*A polynomial is the addition or subtraction of terms (called monomials)
*Each term consists of a number (coefficient) and variables that have either positive or zero exponents. $\quad \chi^{0}=1$

$$
\begin{aligned}
& \text { sitive or zero exponents. } x^{0}=1 \\
& \text { ex. }-5 \Rightarrow \text { monounial (constant) } \begin{array}{l}
\text { ex /l } 3 x^{2} y z+2 x-1 \\
\quad 2 x y \Rightarrow \text { monomial }
\end{array} \quad \text { terms }=\text { trinomial }
\end{aligned}
$$

*Terms are held together by multiplication or division and separated by addition or subtraction
*The degree of a term is the sum of the exponents on the variables.

$$
\text { ex. } 3 x^{\prime} y^{\prime} \Rightarrow 1+1=\text { degree } 2 \text { ex. }-5 x^{\prime} y^{3} z^{2} \Rightarrow \text { degree } 6
$$

*The degree of a polynomial is the degree of the term with the greatest degree.
ex. $2 x^{2}-3 x^{3}+5 x^{0} \Rightarrow$ degree 2
ex. $3^{3} x^{2} y^{\prime}-5 x^{2} y^{3}+2 x^{4} \Rightarrow$ degree 5

* To add or subtract polynomials, group like terms together.

$$
\begin{aligned}
\text { ex. }\left(x^{2}-2 x+5\right)-\left(-x^{2}+x-7\right) \text { ex. } & \left(2 x^{2}-5 x-3\right)-\left(-x^{2}-3 x+1\right) \\
= & x^{2}-2 x+5+x^{2}-x+7= \\
= & 2 x^{2}-5 x-3+x^{2}+3 x-1 \\
= & 3 x^{2}-2 x-4
\end{aligned}
$$

Your turn: a)
b)
*To multiply polynomials, multiply each term of the first polynomial by each term in the second polynomial.

$$
\begin{aligned}
& \text { ex. }(x+2)\left(2 x^{2}-x+3\right) \\
& =2 x^{3}-x^{2}+3 x+4 x^{2}-2 x+6 \\
& =2 x^{3}+3 x^{2}+x+6
\end{aligned}
$$

Your turn: a)
$\operatorname{ex.}(x-3)\left(x^{2}+3 x-2\right)$
$=x^{3}+3 x^{2}-2 x-3 x^{2}-9 x+6$
$=x^{3}-11 x+6$
b)

Add the following polynomials (Write answers in descending order):

1. $\left(7 j^{3}-2\right)+\left(5 j^{3}-j-3\right)$
2. $\left(8 a^{5}-4\right)+\left(3 a^{5}+a-2\right)$
3. $\left(6 m^{5}+1\right)+\left(2 m^{5}+9 m-1\right)$
4. $\left(3 m^{5}+1\right)+\left(9 m^{5}+3 m-2\right)$
5. $\left(-5 x^{2}-x+4\right)+\left(-3 x^{2}-5 x+2\right)$
6. $\left(-4 x+4 x^{3}+7\right)+\left(3 x^{3}-9-3 x\right)$
7. $\left(3 x^{2}-2 x+1\right)+\left(-x^{2}+3 x+1\right)$

Subtract the following polynomials (Write answers in descending order):
8. $\left(-x^{2}+x-4\right)-\left(3 x^{2}-8 x-2\right)$
9. $\left(8 x^{2}-3 x\right)-\left(5 x-5-8 x^{2}\right)$
10. $\left(-x^{2}-5 x-3\right)-\left(-7 x^{2}-8 x-8\right)$
11. $\left(-2 x^{3}+x\right)-\left(7 x-3-7 x^{3}\right)$
12. $\left(3 x^{3}+3 x^{2}+9\right)-\left(5 x^{3}-7 x^{2}+6 x-9\right)$
13. $\left(5 x^{3}+5 x^{2}+5\right)-\left(6 x^{3}-6 x^{2}+8 x-5\right)$
14. $\left(5 x^{3}+3 x^{2}+5\right)-\left(7 x^{3}-9 x^{2}+8 x-5\right)$

Multiply the following polynomials

$S A=6534$ ane side has $v=$?

$$
S A=\frac{6534}{6}=1089
$$

one face

$\therefore V=33^{3}$

$$
V=35937
$$

