3.3 Intersection and Union of Two Sets

intersection: the set of elements that are common to two or more sets

union: the set of all elements in two or more sets

ex. if A = {1, 2, 3} and B = {3, 4, 5} then A \cup B = { 1, 2, 3, 4, 5 }

Communication | Notation

In set notation, $A \cap B$ is read as "intersection of Aand B." It denotes the elements that are common to A and B. The intersection is the region where the two sets overlap in the Venn diagram below.

 $A \cup B$ is read as "union of A and B." It denotes all elements that belong to at least one of A or B. The union is the red region in the Venn diagram below.

A \ B is read as ("A minus B." It denotes the set of elements that are in set A but not in set B. It is the red region in each Venn diagram below.

 $A \setminus B$ when $B \subset A$

 $A \setminus B$ when they are disjoint

A and B orl mutually exchange

A \ B when they intersect not workfully Not workfully

EXAMPLE 1 Determining the union and intersection of disjoint sets

If you draw a card at random from a standard deck of cards, you will draw a card from one of four suits: clubs (C), spades (S), hearts (H), or diamonds (D).

A 		2	*		3 •	*		4 .	*	5.	*	6 . ♣ ♥	* *	7. *	*	***	*	9. . .	*	**	* * *	-	
	*		*	ż	_	÷	ŝ	۴	*	*	* g	٠	*;	*	*	*	**	*	* 6	•	N OI		
Â.		2	^		3	↑ ♥		4 *	٠	5 .	* •	6. ↑ ♥	↑ ♥	7.↑ ♥	* •	** *	* *	9. • •	* *		~ ~ ~		
_	¥		Ý	ŝ	_	Ý	•	¥	¥۴	Ý	₿₿	Ý	∳ [*] 9	Ý	¥2	Ý	V 8	Ý	₩ [*] ₆	٧	₩¢		Y WELL
۹ ۲		2	۲		3 ♥	*		4♥	۲	\$ ♥	.*	€ ∀	*	₹ ₩	*	*	*	9 . .	ž		ž		
	\$	_	٨		_	٨	\$	٨	4;	٨	≜ ĝ	۸	\$		At.		A 8	٨	A_6		A a	l 🔊	
۹ ۱		2	•		3	* *		4.	٠	5 ♦	•	€ ◆ ◆	*	₹ ♦	•	₿ .	•	9.		10			

- a) Describe sets C, S, H, and D, and the universal set U for this situation.
- **b)** Determine n(C), n(S), n(H), n(D), and n(U).
- c) Describe the union of *S* and *H*. Determine $n(S \cup H)$.
- **d**) Describe the intersection of *S* and *H*. Determine $n(S \cap H)$.
- e) Determine whether the events that are described by sets *S* and *H* are mutually exclusive, and whether sets *S* and *H* are disjoint.

F) Describe the complement of
$$SUH$$
.
a) $U = \{all 52 cards\}$ b) $n(u) = 52$
 $C = \{clubs\}$ $h(s) = n(c) = n(d) = n(H) = 13$
 $S = \{Speaders\}$ C) all speaders and hearts
 $H = \{hearto\}$ $n(SUH) = 26$
 $D = \{dramonds\}$ d Speader that are also hearts
 $D = \{dramonds\}$ d Speader that are also hearts
 $n(S \cap H) = \{\} = \emptyset$
 $f)(S \cup H) = (D \cup C)$ e since S and H are digiting
"all the cards that are $fhey$ are mutually exclusive
dramonds OR clubs $U = "OR"$ $\Pi = "AND"$
Your Turn
Petra thinks that $n(S) + n(H) = n(S \cup H)$. Is she correct? Explain.

$$13 + 13 = 26 \Rightarrow (s \cup H) \text{ is all heards Okespadesbut $n(s) + n(H) \neq m(s \cap H)$
$$13 + 13 \neq \emptyset$$$$

EXAMPLE 3 Determining the number of elements in a set by reasoning

Jamaal surveyed 34 people at his gym. He learned that 16 people do weight training three times a week, 21 people do cardio training three times a week, and 6 people train fewer than three times a week. How can Jamaal interpret his results? www.h

number surveyed = 34 sum of survey data = 1b + 21 + 6 = 43"
there must be overlap b/w weights and cardio $u = \frac{2}{3} all surveyed \frac{3}{2}$ $w = \frac{2}{3} weights \frac{3}{2}$ $c = \frac{2}{3} cardio \frac{3}{2}$

only

Your Turn

Jamaal surveyed 50 other gym members. Of these members, 9 train fewer than three times a week, 11 do cardio training three times a week, and 16 do both cardio and weight training three times a week. Determine how many of these members do weight training three times a week.

$$m(cvw) = 50 - 9 = 41$$

 $41 - 11 - 16 = 14$

Example 4 pg. 169 together

Read Key Ideas pg. 171

Homework: pg. 172 # 5, 6, 7, 9, 10, 11*, 12, 16, 17, 18