3.3 Intersection and Union of Two Sets

intersection: the set of elements that are common to two or more sets

$$
\text { ex. if } A=\{1,2,3\} \text { and } B=\{3,4,5\} \text { then } A \cap B=\{3\}
$$

union: the set of all elements in two or more sets
ex. if $A=\{1,2,3\}$ and $B=\{3,4,5\}$ then $A \cup B=\{1,2,3,4,5\}$

Communication Notation

In set notation, $A \cap B$ is read as "intersection of A and B." It denotes the elements that are common to A and B. The intersection is the region where the two sets overlap in the Venn diagram below.

$A \cap B$
$A \cup B$ is read as "union of A and B. . It denotes all elements that belong to at least one of A or B. The union is the red region in the Venn diagram below.

$A \cup B$
$A \backslash B$ is read as " A minus B." It denotes the set of elements that are in set A but not in set B. It is the red region in each Venn diagram below.

$A \backslash B$ when $B \subset A$

$A \backslash B$ when they are disjoint

$A \backslash B$ when they intersect
A and B are mutually
not mutually
exclesivib

EXAMPLE 1 Determining the union and intersection of disjoint sets

If you draw a card at random from a standard deck of cards, you will draw a card from one of four suits: clubs (C), spades (S), hearts (H), or diamonds (D).

a) Describe sets C, S, H, and D, and the universal set U for this situation.
b) Determine $n(C), n(S), n(H), n(D)$, and $n(U)$.
c) Describe the union of S and H. Determine $n(S \cup H)$.
d) Describe the intersection of S and H. Determine $n(S \cap H)$.
e) Determine whether the events that are described by sets S and H are mutually exclusive, and whether sets S and H are disjoint.

$$
\begin{aligned}
& \text { f) Describe the complement of } S \cup H \text {. } \\
& \text { a) } u=\{\text { all } 52 \text { cards }\} \text { b) } n(u)=52 \\
& c=\{\text { clubs }\} \quad n(s)=n(c)=n(\alpha)=n(H)=13 \\
& S=\text { \{spades }\} \quad c \text {) all spades and hearts } \\
& H=\{\text { hart }\} \\
& D=\{\text { diamond }\} \\
& \text { d) Spades that are also hearts } \\
& n(S \cap H)=\{ \}=\varnothing \\
& \text { f) }(S \cup H)^{\prime}=(D \cup C) \\
& \text { e) since } S \text { and } H \text { are clio joint } \\
& \text { "all the cards that are they are mutually exclusive } \\
& \text { chamonds OR clubs }
\end{aligned}
$$

$$
U=" O R " \cap=\text { "AND" }
$$

Your Turn

Petra thinks that $n(S)+n(H)=n(S \cup H)$. Is she correct? Explain.

$$
\begin{aligned}
& \text { ks that } n(S)+n(H)=n(S \cup H) \text {. Is she correct? Explain. hearts or } \\
& \qquad 13+13=26 \Rightarrow(S \cup H) \text { Ts all hear spades } \\
& \text { but } n(S)+n(H) \neq n(S \cap H)
\end{aligned}
$$

EXAMPLE 2 Determining the number of elements in a set using a formula
The athletics department at a large high school offers 16 different sports:
badminton
basketball
cross-country running
curling
football
golf
hockey
lacrosse rugby
cross-country skiing soccer
tennis
ultimate
volleyball
wrestling

Determine the number of sports that require the following types of equipment:
a) a ball and an implement, such as a stick, a club, or a racquet
b) only a ball
c) an implement but not a ball
d) either a ball or an implement
e) neither a ball nor an implement

$$
\begin{aligned}
& U=\{\text { all sports offered }\} \\
& B=\{\text { ball ont }\} \\
& I=\{\text { implement }\}
\end{aligned}
$$

a) $n\{B \cap I\}=4$

$$
\text { b) } \begin{aligned}
n\{B \backslash I\} & =n\{B\}-n\{B \cap I\} \\
& =9-4 \\
& =5
\end{aligned}
$$

$$
\text { c) } m\{I \backslash B\}
$$

$$
=n\{I\}-n\{B \cap I\}
$$

$$
=7-4
$$

$$
=3
$$

d) $n(B \cup I)=m(B)+n(I)-m(B \cap I)=9+7-4=12$
e) $n\left((B \cup I)^{\prime}\right)=n(U)-n(B \cup I)$

$$
=16-12=4
$$

Principle of Inclusion and Exclusion:
The umber of elements in the union of 2 sets is the number of elements m each minus the number in both

$$
n(A \cap B)=n(A)+n(B)-n(A \cup B)
$$

EXAMPLE 3 Determining the number of elements in a set by reasoning

Jamaal surveyed 34 people at his gym. He learned that 16 people do weight training three times a week, 21 people do cardio training three times a week, and 6 people train fewer than three times a week.
How can Jamaal interpret his results?
nurroder surveyed $=34$

$$
\text { sum of survey data }=16+21+6=43
$$

\therefore there must be overlap b/w weights and cardio $n=\{$ all surveyed $\}$ $w=\{$ weights $\}$ $C=\{$ cardio $\}$

Your Turn

Jamaal surveyed 50 other gym members. Of these members, 9 train fewer than three times a week, 11 do cardio training three times a week, and 16 do both cardio and weight training three times a week. Determine how many of these members do weight training three times a week.

$$
\begin{gathered}
n(c \cup \omega)=50-9=41 \\
41-11-16=14
\end{gathered}
$$

Example 4 pg. 169 together

Read Key Ideas pg. 171
Homework: pg. 172 \# 5, 6, 7, 9, 10, 11*, 12, 16, 17, 18

