3.4 FBDs in 2-D with Component Vectors
ex. A 70 kg person sits on a 20 kg sled. Two people pull the sled with the following forces. Determine the acceleration of the sled assuming a frictionless sliding surface.


$$
\begin{aligned}
\vec{F}_{2 x} & =60 \cos \left(25^{\circ}\right) \\
& =54.4 \mathrm{~N} \\
\vec{F}_{2 y} & =60 \sin \left(-25^{\circ}\right) \\
& =-25.4 \mathrm{~N}
\end{aligned}
$$



Acceleration requires magnitude AND direction!!

$$
\begin{aligned}
& \tan \theta=\frac{6.7}{92.7} \quad\left|\vec{F}_{\text {net }}\right|^{2}=6.7^{2}+92.7^{2} \\
& \theta=4^{\circ} \\
& \therefore\left|\vec{F}_{\text {net }}\right|=93 \mathrm{~N} \\
& \text { total mass mag }=93 \mathrm{~N}\left[\vec{E} 4^{\circ} \mathrm{N}\right] \\
&=90 \mathrm{~kg}+20 \mathrm{~kg} \\
& \therefore \vec{a}=\frac{F_{\text {net }}}{\mathrm{m}} \\
&=\frac{93 \mathrm{~N}}{90 \mathrm{~kg}} \\
& \vec{a}=1 \mathrm{~m} / \mathrm{s}^{2}\left[E 4^{\circ} \mathrm{N}\right]
\end{aligned}
$$

ex. Two tugboats are towing a tanker of mass $3.30 \times 10^{7} \mathrm{~kg}$. If one is pulling at $2.40 \times 10^{4} \mathrm{~N}\left[\mathrm{E} 16^{\circ} \mathrm{N}\right]$ and the other is pulling at $2.40 \times 10^{4} \mathrm{~N}\left[\mathrm{E} \mathrm{9} 9^{\circ} \mathrm{S}\right]$,
a) calculate the acceleration of the tanker assuming no resistance
b) If the tanker has a resistive force of $5.60 \times 10^{3} \mathrm{~N}$, find the acceleration
c) find the speed reached in part b) after 2 minutes in $\mathrm{km} / \mathrm{h}$
d) Calculate the distance required to reach a speed of $5 \mathrm{k} / \mathrm{h}$

$\xrightarrow{+}$


$$
\begin{aligned}
x: \vec{F}_{1 x} & =2.4 \times 10^{4} \cos 16 \\
& =2.307 \times 10^{4} \mathrm{~N} \\
\vec{F}_{2 x} & =2.4 \times 10^{4} \cos \left(9^{\circ}\right) \\
& =2.370 \times 10^{4} \mathrm{~N} \\
\vec{F}_{\text {net }} & =\overrightarrow{F_{1 x}}+\vec{F}_{2 x} \\
& =46775 \mathrm{~N}
\end{aligned}
$$

$$
y: F_{1 y}=2.4 \times 10^{4} \sin 16^{\circ}
$$

$$
=0.6615 \times 10^{4} \mathrm{~N}
$$

$$
F_{2 y}=2.4 \times 10^{4} \sin \left(-9^{\circ}\right)
$$

$$
=-0.3754 \times 10^{4} \mathrm{~N}
$$

$$
\vec{F}_{\text {net }}^{Y}=2862 \mathrm{~N}
$$

$\tan \theta=\frac{2862}{46775}$

$$
\theta=3.5^{\circ}
$$

$$
\xrightarrow[{\vec{F}_{\text {net }}=46862 \mathrm{~N}\left[\mathrm{E}^{2}\right.}]]{\text { Frestavee }} \stackrel{\rightharpoonup}{F}_{\text {tug }}
$$

b)

$$
\begin{aligned}
\vec{F}_{\text {net }} & =46862 \mathrm{~N}-5600 \mathrm{~N} \\
& =41262 \mathrm{~N}\left[E 3.5^{\circ} \mathrm{N}\right] \Rightarrow \vec{\partial}=0.00125 \mathrm{~m} / \mathrm{s}^{2}\left[E 3.5^{\circ} \mathrm{N}\right]
\end{aligned}
$$

practice: photocopy \#48, 49, 50
C) $2 \mathrm{~min}=120 \mathrm{~s}$
d) $\vec{V}_{2}^{2}=\overrightarrow{\vec{H}}_{1}^{2}+2 \vec{a}^{2} \Delta^{2} d$

$$
\begin{aligned}
& \min =120 s \\
& \vec{a}=\frac{\vec{V}_{2}-\overrightarrow{V_{1}}}{\Delta t}
\end{aligned}
$$

$$
\text { but } \vec{v}_{2}=5 \mathrm{~km} / \mathrm{h}
$$

$$
=1.389 \mathrm{~m} / \mathrm{s}
$$

$$
\Delta d=\frac{\vec{V}_{2}^{2}}{2 \stackrel{\rightharpoonup}{a}}
$$

$$
\begin{aligned}
& 2 a \\
= & \frac{(1.389)^{2}}{2(0.00125)}
\end{aligned}
$$

$$
\Delta d=772 \mathrm{~m}
$$

