3.4 Modelling Trinomials as Binomial Products

*If we want to multiply 13 x 17 we can use a grid or area model to find the answer

*How about if we want to multiply two binomials?

ex. (x + 3)(x + 7)

*Expand the following a) (x + 2)(x + 6) b) (x - 2)(x + 6)

c) (x + 2)(x - 6) c) (x - 2)(x - 6)

What do we notice?

Using this property, could we turn a trinomial into the product of two binomials?

ex. a) $x^2 + 7x + 12$	b) $x^2 + 7x + 13$
c) x^2 + 5x + 6	d) x ² + x - 12
e) x ² - x - 12	f) $x^2 - x + 12$

What could go in the missing spot to make the trinomial factorable?

g) $x^2 + ?x + 15$ h) $x^2 + ?x + 12$

i)
$$x^2 + 5x + ?$$
 j) $x^2 - 3x + ?$

Algebra tiles can actually be useful! If we can arrange the tiles of a trinomial into a rectangle, the lengths of the rectangle are the factors of the trinomial. Remember these examples? Try using tiles to help find the answers.

$$x^2 + 5x + 6$$
 $x^2 + ?x + 12$