3.4a Trinomials as products of binomials

*If we want to multiply 13×17 we can use a grid or an area model to find the answer.

*And if we want to multiply two binomials?
ex. $(x+3)(x+7)$
or
$(x+3)(x+7)$

*Expand
a) $(x+2)(x+6)$
b) $(x-2)(x+6)$
c) $(x+2)(x-6)$
c) $(x-2)(x-6)$

What do we notice?

With this pattern, transform these trinomials into the product of 2 binomials.
ex. a) $x^{2}+7 x+12$
b) $x^{2}+7 x+13$
c) $x^{2}+5 x+6$
d) $x^{2}+x-12$
e) $x^{2}-x-12$
f) $x^{2}-x+12$

What could replace the ? so that the trinomial is factorable?

$$
\begin{array}{ll}
\text { g) } x^{2}+? x+15 & \text { h) } x^{2}+? x+12 \\
\text { i) } x^{2}+5 x+? & \text { j) } x^{2}-3 x+?
\end{array}
$$

Algebra tiles can also be useful!! If we arrange the tiles of a trinomial into a perfect rectangle, the side lengths represent each factor.

$$
x^{2}+5 x+6 \quad x^{2}-7 x+12
$$

