<u>3.5 Factoring $x^2 + bx + c$ </u>

A trinomial can be factored if a certain set of criteria exists. Consider expanding:

$$(x + 2)(x + 3) = \chi^{2} + 3\chi + 2\chi + 6$$

= $\chi^{2} + 5\chi + 6$

Now consider breaking up trinomials into factors

$$ex. x^{2} + 5x + 6 \underbrace{2 \cdot 3}_{Z + 3} = 6 \quad ex. x^{2} + 3x - 10 \quad \underbrace{5 \cdot 2}_{Z + 2} = -10$$

$$= (X + 2)(X + 3) \quad = (X + 5)(X - 2)$$

***We are always looking for factors of c that have a sum of b

Try the following examples

a)
$$x^{2} + 10x + 21$$

 $(7 + 3)(7 + 7)'$
c) $x^{2} - 11x + 28$
 $-4 + 7 = -28$
 $-4 + 7 = -11$
 $= (7 + 6)(7 + 4)$
b) $x^{2} - x - 20$
 $= (7 - 5) \cdot 4 = -26$
 $= (7 - 5)(7 + 4)$
 $= (7 - 5)(7 + 4)$
 $= (7 - 5)(7 + 4)$
 $= (7 - 5)(7 + 4)$
 $= (7 - 5)(7 + 4)$
 $= (7 - 5)(7 + 4)$
 $= (7 - 5)(7 + 4)$
 $= (7 - 5)(7 + 4)$
 $= (7 - 5)(7 + 4)$
 $= (7 - 5)(7 + 4)$
 $= (7 - 5)(7 + 4)$
 $= (7 - 5)(7 + 4)$
 $= (7 - 5)(7 + 4)$
 $= (7 - 5)(7 + 4)$
 $= (7 - 5)(7 + 4)$
 $= (7 - 5)(7 + 4)$
 $= (7 - 5)(7 + 4)$
 $= (7 - 5)(7 + 4)$
 $= (7 - 5)(7 + 4)$
 $= (7 - 5)(7 + 4)$
 $= (7 - 5)(7 + 4)$
 $= (7 - 5)(7 + 4)$
 $= (7 - 5)(7 + 4)$
 $= (7 - 5)(7 + 4)$
 $= (7 - 5)(7 + 4)$
 $= (7 - 5)(7 + 4)$
 $= (7 - 5)(7 + 4)$
 $= (7 - 5)(7 + 4)$
 $= (7 - 5)(7 + 4)$
 $= (7 - 5)(7 + 4)$
 $= (7 - 5)(7 + 4)$
 $= (7 - 5)(7 + 4)$
 $= (7 - 5)(7 + 4)$
 $= (7 - 5)(7 + 4)$
 $= (7 - 5)(7 + 4)$
 $= (7 - 5)(7 + 4)$
 $= (7 - 5)(7 + 4)$
 $= (7 - 5)(7 + 4)$
 $= (7 - 5)(7 + 4)$
 $= (7 - 5)(7 + 4)$
 $= (7 - 5)(7 + 4)$
 $= (7 - 5)(7 + 4)$
 $= (7 - 5)(7 + 4)$
 $= (7 - 5)(7 + 4)$
 $= (7 - 5)(7 + 4)$
 $= (7 - 5)(7 + 4)$
 $= (7 - 5)(7 + 4)$
 $= (7 - 5)(7 + 4)$
 $= (7 - 5)(7 + 4)$
 $= (7 - 5)(7 + 4)$
 $= (7 - 5)(7 + 4)(7 - 7)$