3.5 Factoring $x^{2}+b x+c$

A trinomial can be factored if a certain set of criteria exists. Consider expanding:

$$
\begin{aligned}
& (x+2)(x+3) \\
= & x^{2}+3 x+2 x+6 \\
= & x^{2}+5 x+6
\end{aligned}
$$

Now consider breaking up trinomial into factors

$$
\begin{aligned}
& \text { ex. } x^{2}+5 x+6 \frac{2}{2} \cdot \frac{3}{2}=6 \quad \text { ex. } x^{2}+3 x-10 \quad \frac{5}{5} \cdot \frac{-2}{-2}=-10 \\
& =(x+2)(x+3)=3
\end{aligned}
$$

***We are always looking for factors of c that have a sum of b

Try the following examples

$$
\begin{aligned}
& \text { a) } x^{2}+10 x+21
\end{aligned}
$$

$$
\begin{aligned}
& \text { c) } x^{2}-11 x+28 \\
& -4-7=28 \\
& \text { d) } x^{2}+5 x-6 \\
& 6 \cdot-1=-6 \\
& 6+2=5 \\
& -4+-7=-11=(x+6)(x-1) \\
& =(x-4)(x-7)
\end{aligned}
$$

