3.6 Factoring Trinomials of the form $a x^{2}+b x+c$

I. Factoring a common binomial
a) $x A+y A$
b) $2 x(3 x-1)-3(3 x-1)$
c) $x(x-1)+y(x-1)-3(x-1)$
II. Factoring $a x^{2}+b x+c$:

 | another |
| ---: | :--- |
| called | \left\lvert\, \(\begin{aligned} \& method

\& decomposition\end{aligned}\right.\) try to represent this with an area model $6 x^{2}+7 x+2$

* find 2 factors of \qquad that add up to \qquad
* \qquad the middle term into these two factors
* group the \qquad terms and the \qquad terms
* factor each group
* use binomial factoring to write the trinomial as the product of two binomials
III. There are many ways to factor a trinomial. Here's another trick; it's called the Criss-Cross method...
ex. $6 x^{2}-13 x+5$
* break up the first term into two factors and write them below the first term
* break up the constant term into two factors and do the same
* cross multiply the factor to see if their sum is the b-value
* if so, you now have the correct binomials to factor the trinomial... if not, try switching the factors around until it works.
IV. And now for my favourite method: simple inspection
ex. $4 x^{2}-4 x-15$
* set up two brackets that will contain your binomial products
* place two factors of the first term in the first position of both brackets
* place two factors of the last term in the second position of both brackets
* perform some quick distribution to see if FOIL yields the middle term; if not move some peices around and try again

Ex. Try these with the technique of your choice
a) $2 x^{2}-9 x+18$
b) $9 x^{2}-21 x+10$

