3.6 Factoring Trinomials of the form
$$ax^2 + bx + c$$
 complexe
1. Factoring a common binomial
a) $xA + yA$ (what if $fi=(x+1)$ b) $2x(3x-1) \cdot 3(3x-1)$
= $A(x+y) \cdot x(x+1) + y(x+1) = (3x-1)(2x-3)$
= $(x+1)(x+y)$
= $(x-1)(x+y-3)$
II. Factoring $ax^2 + bx + c$:
 $a ex. 6x^2 + 1x + 2$ try to represent this
called decomposition
 $6x^2 + 7x + 2$ find the product $a \cdot x = 12(6x^2 + 7x + 2)$
 $\frac{3}{2} \cdot \frac{4}{12} = 7$ find the product $a \cdot x = 12(6x^2 + 7x + 2)$
 $\frac{3}{2} \cdot \frac{4}{12} = 7$ find 2 factors of AC that add up to $\frac{1}{2}$
 $\frac{7x}{6x^2 + 1x + 2}$ try to represent this $2x + \frac{3x}{6x^2 + 7x + 2}$
 $\frac{3}{12} \cdot \frac{4}{12} = 7$ find 2 factors of AC that add up to $\frac{1}{2}$
 $\frac{7x}{6x^2 + 3x + 4x + 2}$ to break up the middle term into these two factors
 $(6 \times x^2 + 3x) + (4 \times x + 2)$ terms
 $3x(2x+1)+2(2x+1)$ terms
 $3x(2x+1)+2(2x+1)$ ture binomial factoring to write the trinomial as the product of two binomials
 $ex. 6x^2 - 13x + 5$ $-\frac{3}{2} \cdot -10 = 30$
 $= 3x(2x-1)-5(2x-1)$ alway factor the negative
 $= (2x-1)(3x-5)$

III. There are many ways to factor a trinomial. Here's another trick; it's called the Criss-Cross method...

ex. $6x^2 - 13x + 5$	* break up the first term into two factors and write them below the first term
	* break up the constant term into two factors

* break up the constant term into two factors and do the same

* cross multiply the factor to see if their sum is the b-value

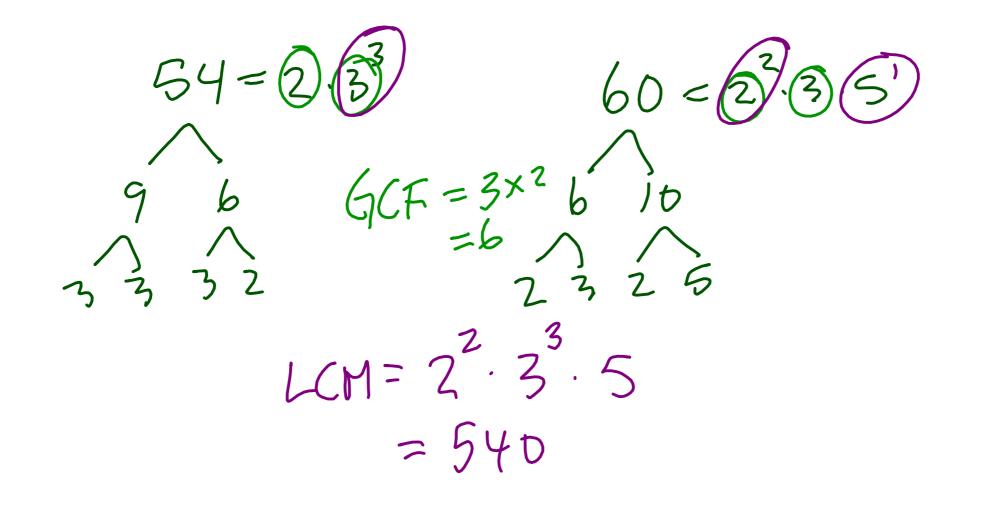
* if so, you now have the correct binomials to factor the trinomial... if not, try switching the factors around until it works.

IV. And now for my favourite method: simple inspection

ex. 4*x*² - 4*x* - 15

* set up two brackets that will contain your binomial products

* place two factors of the first term in the first position of both brackets


* place two factors of the last term in the second position of both brackets

* perform some quick distribution to see if FOIL yields the middle term; if not move some peices around and try again

Ex. Try these with the technique of your choice **9**

a)
$$2x^{2} - 9x - 18 - 12 \cdot 3 = -36$$
 b) $9x^{2} - 21x + 10$ $-6 \cdot -15 = 90$
 $-36 - -12 + 3 = -9$ $-6 + -15 = -21$
 $= (2x^{2} - 12x) + (3x - 18) = (9x^{2} - 6x) + (-15x + 16)$
 $= 2x(x - 6) + 3(x - 6) = 3x(3x - 2) - 5(3x - 2)$
 $= (x - 6)(2x + 3) = (3x - 2)(3x - 5)$

Homefun: pg. 177 #(5-23)aceg

