3.8 Factoring Special Polynomials
I. A Perfect Square Trinomial ... is of the form

$$
\begin{aligned}
& \begin{array}{l}
=(a+b)^{2} \\
=a^{2}+a b+a b+b^{2} \\
=a^{2}+2 a b+b^{2}
\end{array} \quad \text { or } \quad=a^{2}-2 a b+b^{2}
\end{aligned}
$$

$=a^{2}+2 a b+b^{2}$

* A trinomial is a perfect square if the middle term coefficient $= \pm 2 \sqrt{a} \sqrt{b}$

when the two numbers ex. $36 y^{2}+12 y+1$

$$
=(b y+1)^{2} \quad b+b=12
$$

check with expansion

$$
\begin{aligned}
& (2-5 x)(2-5 x)^{2} \\
= & 4-20 x+25 x^{2}
\end{aligned}
$$

II. 2-Variable Trinomial

If the trinomial is of the form $a x^{2}+b x y+c y^{2}$ factor it as though it is either a simple (3.5) or complex (3.6) trinomial but add the extra variable in the appropriate

$$
\begin{aligned}
& \text { spot. } \\
& \text { ex. } \frac{6}{2 a^{2}-7 a b+3 b^{2}-b} \cdot \underline{-i}=6 \quad \frac{-20}{\text { ex. } 10 c^{2}-c d-2 d^{2}} \quad-5 \cdot 4=-20 \\
& -6+-1=-7 \\
& -5+4=-1 \\
& =\left(2 a^{2}-6 a b\right)^{\dagger}\left(-a b+3 b^{2}\right) \quad=\left(10 c^{2}-5 c d\right)+\left(4 c d-2 d^{2}\right) \\
& =2 a(\underline{a-3 b})-b(\underline{a-3 b}) \\
& =5 c(2 c-d)+2 d(2 c-d) \\
& =(a-3 b)(2 a-b) \\
& =(2 c-d)(5 c+2 d) \\
& \text { ex. } 16 y^{2}-56 x y+49 x^{2} \\
& -28 \cdot-28=784 \text { same!. } \\
& -28+28=-56 \\
& =(4 y-7 x)^{2}
\end{aligned}
$$

III. A Difference of Squares ... is of the form

$$
\left(a^{2}-b^{2}\right)=(\underbrace{(a+b)(a-b)}_{\text {to ab }}=0 \ldots \text { nothing }
$$

ex. a) $25-36 y^{2}$

$$
=(5-6 y)(5+6 y)
$$

$$
\begin{aligned}
& \text { b) } 9 x^{2}-49 \\
& =(3 x-7)(3 x+7)
\end{aligned}
$$

c) $121 x^{4} y^{2}-64 y^{8}$

$$
=\left(11 x^{2} y-8 y^{4}\right)\left(11 x^{2} y+8 y^{4}\right)
$$

$$
\begin{aligned}
& \text { d) } 5 x^{4}-80 y^{4} \\
& =5\left(x^{4}-16 y^{4}\right) \quad \text { tui } a \\
& =5\left(x^{2}+4 y^{2}\right)\left(x^{2}-4 y^{2}\right) \\
& =5\left(x^{2}+4 y^{2}\right)(x+2 y)(x-2 y)
\end{aligned}
$$

e) $162 a^{4}-2 w^{8}$

$$
\begin{aligned}
& =2\left(81 a^{4}-w^{8}\right) \\
& =2\left(9 a^{2}+w^{4}\right)\left(9 a^{2}-w^{4}\right) \\
& =2\left(9 a^{2}+w^{4}\right)\left(3 a-w^{2}\right)\left(3 a+w^{2}\right)
\end{aligned}
$$

