3.8a Factoring special polynomials

I. Trinomials with 2 variables

If a trinomial is of the form $a x^{2}+b x y+c y^{2}$, factor as usual (3.5) but add the extra variable at the end of the factored binomials.

$x^{2}+b x+c$

ex. $a^{2}+4 a-77 \quad$ 1 $-0-4=-77$

$$
\text { ex. } a^{2}+4 a-77 \quad \text {, } 110-4=-77
$$

$$
\begin{aligned}
& (x+11)(x-4) \xrightarrow{\text { same }} \rightarrow(a+11 b)(a-4 b) \\
& \text { add the } 1 b^{\prime \prime \prime}
\end{aligned}\left(\begin{array}{l}
\text { ex. } \\
\text { at the end } 2 x^{2}+x-3 y-3 y^{2}
\end{array}\right.
$$

$$
=(2 x+3)(x-1) \quad=(2 x+3 y)(x-y)
$$

sume ceefficients
ex. $12 m^{2}+5 m-3$

II. A perfect Square Trinomial is a trinomial that breaks down into two identical factors. Thus, its area model is a square.

When the two factoro
are the same you know
it's a perfect square frinomial
ex. $p^{2}+10 p q+25 q^{2}$
$5 \cdot S=25$ $5+5=10$

$$
=(p+5 q)(p+5 q)
$$

$$
=(p+5 q)^{2}
$$

III. A Difference of Squares ... are of the form

$$
a^{2}-b^{2}=(a+b)(a-b)
$$

$$
\begin{aligned}
& \text { P } \\
& \text { a D.O.5. is always a binomial with a negative } \\
& \text { in the middle. }
\end{aligned}
$$

$$
\begin{array}{ll}
\text { ex. a) } y^{2}-25-5 y & \text { b) } x^{2}-169 \\
=\frac{(y-5)(y+5)}{+5 y} & =(x-13)(x+13)
\end{array}
$$

c) $9 x^{2}-49$
d) $16 x^{4}-z^{6}$
$=(3 x+7)(3 x-7)$
$=\left(4 x^{2}+z^{3}\right)\left(4 x-z^{3}\right)$
e) $121 x^{4} y^{2}-64 y^{8}$

$$
\begin{aligned}
& \text { e) } 162 a^{4}-2 w^{8} \\
& =2\left(81 a^{4}-w^{8}\right)=5\left(x^{2}+4\right. \\
& =2\left(9 a^{2}+w^{4}\right)\left(9 a^{2}-w^{4}\right) \\
& =2\left(9 a^{2}+w^{4}\right)\left(3 a+w^{2}\right)\left(3 a-w^{2}\right)
\end{aligned}
$$

a) $a^{2}+4 a-77$
b) $a^{2}-4 a b-77 b^{2}$
c) $2 x^{2}+x-3$
d) $2 x^{2}+x y-3 y^{2}$
e) $12 m^{2}+5 m-3$
f) $12 m^{2}+5 m n-3 n^{2}$
g) $p^{2}+10 p q+25 q^{2}$
h) $4 x^{2}-20 x+25$

$$
\begin{gathered}
\text { i) } y^{2}+0 y-25 \\
55+5=-29 \\
-5+5=0 \\
\text { 2 }(y+5)(y-5) \\
\text { k) } 9 x^{2}+8 x y-49 y^{2}
\end{gathered}
$$

m) $25 w^{2}-36 x^{2}$

$$
\text { j) } \begin{aligned}
& x^{2}+0 x y y-169 y^{2} \\
&=(x-13 y)(x+13 y) \\
& \text { l) } 4 x^{2}-36=4\left(x^{2}-9\right) \\
&(4(x+3)(x-3) \\
&(2 x+6)(2 x-6) \\
& \text { n) } 16 x^{4}-z^{6} \\
&=\left(4 x^{2}-z^{3}\right)\left(4 x^{2}+z^{3}\right)
\end{aligned}
$$

0) $121 x^{4} y^{2}-64 y^{8}$

$$
q) 162 a^{4}-2 w^{8}
$$

$$
\begin{aligned}
& p) 5 x^{4}-80 y^{4} \\
= & 5\left(x^{4}-16 y^{4}\right) \\
= & 5\left(x^{2}+4 y^{2}\right)\left(x^{2}-4 y^{2}\right) \\
= & 5\left(x^{2}+4 y^{2}\right)(x+2 y)(x-2 y)
\end{aligned}
$$

