4.1 Estimating Roots

Terminology

Squares and Cubes

base	1	2	3	4	5	6	7	8	9	10	11	12	13
square	J	4	9	JЬ	25	3,6	49	64	81	100	121	144	169
cube)	8	27	64	125	216	343	512	729	1000	1331	17-28	2197

* To effectively estimate the square root of a number we must know the perfect squares above and below the given number.

b)
$$\sqrt{52}$$
 $\sqrt{92} < \sqrt{64}$
 $\sqrt{52} < \sqrt{64}$

* For cube roots, we must know the perfect cubes above and below the given number.

a)
$$\sqrt{-9} = error$$
 b) $\sqrt[4]{-625}$ c) $\sqrt[3]{-27} = -3$
... not possible also NOT since $(-3)^3 = -27$
Since no 2 possible identical #5
have a negative product calculator typ: exorent $(-1) = 0$
or $(-1) = 0$

$$6)4-27 = -3$$

Since $(-3)^3 = -27$

on a Ti-83/4

try 5/65

* It is impossible to take an even root of a negative number. However, odd roots are possible.

a)
$$\sqrt{-9} = 6$$

* A root is an exact value if its value can be written as a rational number (fraction). A number that repeats or terminates can always be written as a fraction.

b)
$$\sqrt{81}$$

= 1.1

= 0.4

= 0.816496...

repeato

repeato

so exact

value...

 $= \frac{4}{9}$

if terminate

 $= \frac{4}{9}$
 $= \frac{4}{9}$
 $= \frac{2}{9}$

b) $0.35 = 35$

$$ex/a)0.\overline{z} = \frac{2}{9}$$
 b) $0.\overline{35} = \frac{35}{99}$

c)
$$0.\overline{123} = \underline{123}$$

c)
$$0.\overline{123} = \underline{123}$$
 d) $0.\overline{123} = \underline{123}$

homefun: pg. 206 #1-6