4.1 Estimating Roots

Terminology

Squares and Cubes

base	1	2	3	4	5	6	7	8	9	10	11	12	13
square	1	4	9	16	25	36	49	64	81	100	121	144	169
cube	1	8	27	64	125	216	343	512	729	1000	1331	1728	2197

* To effectively estimate the square root of a number we must know the perfect squares above and below the given number.
a) $\sqrt{30}$
b) $\sqrt{52}$
c) $\sqrt{312}$
$\sqrt{25}<\sqrt{30}<\sqrt{36}$
$5<\sqrt[5]{30}<6$
$\sqrt{49}<\sqrt{52}<\sqrt{64}$
$\sqrt{289}<\sqrt{312}<\sqrt{324}$
$17<\sqrt{312}<18$
$\sqrt{30} \approx 5.5 \quad \therefore \sqrt{52} \approx 7.2$
$7<\sqrt{52}<8$
$\therefore \sqrt{312}$
* For cube roots, we must know the perfect cubes above and below the given number.
d) $\sqrt[3]{20}$
e) $\sqrt[3]{600}$
f) $\sqrt[3]{-29}$
$\sqrt[3]{8}<\sqrt[3]{20}<\sqrt[3]{27}$
$\sqrt[3]{88} \frac{\sqrt[3]{600}<\sqrt[3]{729}}{129}$
$\sqrt[3]{-64}<\sqrt[3]{-29}<\sqrt[3]{3}_{2}^{-27}$
$2<\sqrt[3]{20}<3$
$8<\sqrt[3]{600}<9$
$-4<\sqrt[3]{-29}<-3$
$\sqrt[3]{20} \approx 2.7$
$\therefore \sqrt[3]{600} \approx 8.4$
$\therefore \sqrt[3]{-29} \approx-3.1$
How about these?
a) $\sqrt{-9}=\operatorname{error}$
b) $\sqrt[4]{-625}$
c) $\sqrt[3]{-27}=-3$
... not possible also NOT since $(-3)^{3}=-27$
since no 2
identical \#s
have a negative
product
$(-x-)=\oplus$
$(-)(-)(-)(-)=\oplus$
on a Ti-83/4
calculator tip: exprent \triangle or x^{y} or y^{x}

$$
\text { Moth } 5
$$

$$
\operatorname{try} \sqrt[5]{65}
$$

* It is impossible to take an even root of a negative number. However, odd roots are possible.
a) $\sqrt{-9}=$
b) $\sqrt[3]{-27}=-3$
c) $\sqrt[4]{-625}=$ Not possible
* A root is an exact value if its value can be written as a rational number (fraction). A number that repeats or terminates can always be written as a fraction.
a) $\sqrt{1.21}$
b) $\sqrt{\frac{16}{81}}$

exact

repeats
so exact
$=\frac{4}{9}$
c) $\sqrt{\frac{2}{3}}$
$=0.816496 \ldots$
- no pattern value it terminates
ext) $0 \cdot \overline{2}=\frac{2}{9}$
b) $0 . \overline{35}=\frac{35}{99}$
c) $0 . \overline{123}=\frac{123}{999}$
d) $0.123=\frac{123}{1000}$ " not ration
"appriximate value only

