4.2 Permutations and Factorial Notation
permutations: an arrangement of distinguishable elements in a different order.
ex. how many permutations exist for the litres A, B and C

$$
\left.\begin{array}{ccc}
A B C & B A C & C A B \\
A C B & B C A & C B A
\end{array}\right\} \quad 3 \cdot 2 \cdot 1=6
$$

factorial notation: the product of consecutive descending natural numbers

$$
\begin{array}{ll}
\text { ex. } 5!= & \text { but also... 3! } \times 4= \\
5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 & =(3 \cdot 2 \cdot 1) \times 4 \\
=120 & =1.2 .3 \cdot 4 \\
{[5 \text { math PRB ! }} & =4!
\end{array}
$$

$$
1,2,3, \ldots
$$

EXAMPLE 1 Solving a counting problem where order matters
Determine the number of arrangements that six children can form while lining up to drink.

$$
6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1=6!
$$

EXAMPLE 2
Evaluating numerical expressions involving factorial notation
Evaluate the following.
a) 10 !
b) $\frac{12!}{9!3!}$

$$
\begin{aligned}
& =10 \cdot 9 \cdot 8 \ldots \\
& =3628000
\end{aligned}
$$

Your Turn

When $(n+3)(n+2)$! is multiplied by $(n+4)$ and then divided by
$(n+2)$!, what is the result?

$$
\frac{(n+4)(n+3)(n+2)!}{(n+2)!}=(n+4)(n+3)
$$

EXAMPLE 4 Solving an equation involving factorial notation
Solve $\frac{n!}{(n-2)!}=90$, where $n \in \mathrm{I}$. get the value of n that satisfies the eqnn $\frac{n \cdot(n-1) \cdot(n-2)!}{(n-2)!}=90 \quad x$ always expand the $(n-2)!$ greater factorial so $n(n-1)=90$ that it matches the here we need 2 tower factorial consecutive numbers that have a prochet $=90$ then cancel the terms

* by observation $10 \cdot q=90$
n istle bigger \#so \rightarrow solve fer n $n=10 \rightarrow n^{2}-n-90=0 \quad-10 \cdot 9=90$
Your Turn
Solve $\frac{(n+4)!}{(n+2)!}=6$, where $n \in I$.

$$
\begin{aligned}
& n^{2}+7 n+12=6 \\
& n^{2}+7 n+6=0 \\
& (n+1)(n+6)=0 \\
& n+1=0 \quad n+6=0 \\
& n=-1 \quad n=6
\end{aligned}
$$

Homefun pg. 243 \#2, 3, 5, 6, 9, 12, 14, 15, 16 check $(n+2)$

