4.2 Solving Equations by Factoring

* Sometimes, quadratic equations can be factored. Once factored, we can determine the roots of the equation (or the zeroes of the related quadratic function) very easily. To do so, we must understand the zero product rule .
ex. think of two numbers that have a product $=0$ What do you notice? \Rightarrow one of the numbers must $=0$
ex. $0=x^{2}-6 x+5 \quad-1 \cdot-5=5$ related function
$0=(x-1)(x-5)-1+\overline{-5}=-6$

ex. Find the zeroes for the function $f(x)=8 x^{2}+4 x-60$
to get the zeroes set $f(x)=0$, factor and sot ne
$0=8 x^{2}+4 x-60-5 \cdot 6=-30$
$0=4(\underbrace{2 x^{2}+x-15}_{-30})-\overline{5}+\underline{6}=1$
$0=4\left[\left(2 x^{2}-50\right)+(6 x-15)\right]$
$0=4[x(2 x-5)+3(2 x-5)] \quad x=-3$

ex. The product of two consecutive even integers is 16 more than 8 times the smaller integer. Determine the integers.
let $x=1$ st $\#$
$x+2=2^{\text {nd }}$ \#

$$
x^{2}+2 x=8 x+16
$$

$$
\begin{array}{rl}
-8 & 2
\end{array}=-166
$$

$$
x^{2}-6 x-16=0
$$

$$
(x-8)(x+2)=0
$$

Homefun: Pg. 229 \#(1, 3-5, 7-9)ace, 11, 12, 18-20, 23, 26, 28
2 possible sol ${ }^{\text {ns }}$.

$$
\begin{aligned}
& \text { if } 1^{s t} \#=8 \\
& \text { then } 2^{\text {nd }} \#=10 \text { or }
\end{aligned}
$$

$$
\text { if } \text { it }_{\text {st }}=-2
$$

ether the numbers

$$
2^{\text {nd }} \neq 0
$$ are \square

$$
\left\{\begin{aligned}
L S= & x(x+2) \quad R S= \\
= & =2(0)= \\
& =0 \\
& L S=R S
\end{aligned}\right.
$$

