$12,19,23$
\#/2. $h(t)=5 t^{2}-30 t+45$
a) $\operatorname{set} h(t)=20$

$$
\begin{aligned}
& 20=5 t^{2}-30 t+45 \\
& 0= 5 t^{2}-30 t+25 \\
& 0= 5\left(t^{2}-6 t+5\right) \quad-5+-1=5 \\
& 0=5(t-5)(t-1) \quad-5+7=-6 \\
& t-5=0 \quad t-1=0 \\
& t=5 \quad t=1
\end{aligned}
$$

19.b) $3(x-2)(x+1)-4=2(x-1)(x-1)$

$$
\begin{aligned}
& 3\left(x^{2}-x-2\right)-4=2\left(x^{2}-2 x+1\right) \\
& 3 x^{2}-3 x-10=2 x^{2}-4 x+2 \\
& x^{2}+x-12=0 \\
& (x-3)(x+4)=0 \\
& x=3 x x=-4
\end{aligned}
$$

$$
\begin{aligned}
& \rightarrow \frac{\sum^{40} 20}{x}=-\sum_{20+2 x}^{i} \quad A_{\text {path }}=A_{T}-A_{\text {fliwers }} \\
& 700=\frac{(20+2 x)(40+2 x)}{-(20)(40)} \\
& 700=800+120 x+4 x^{2}-800 \\
& 0=4 x^{2}+120 x-700
\end{aligned}
$$

4.3 Solving with Vertex Form

* It is sometimes easier to solve a quadratic equation when it is transformed into vertex form.
* To do so, we must remember that $\mathrm{if} \sqrt{x^{2}}=\sqrt{a}$ then... $\quad x= \pm \sqrt{a}$ ex. Solve the following.
a) $x^{2}=13$

$$
x= \pm \sqrt{13}
$$

$$
\begin{aligned}
\text { b) }(x-3)^{2}-16 & \overrightarrow{ } \\
\sqrt{(x-3)^{2}} & = \pm \sqrt{16}
\end{aligned}
$$

c) $3(x+5)^{2}-40=0$

$$
\begin{gathered}
x-3= \pm 4 \\
x-3=4 \quad \pm \\
x-3=-4
\end{gathered}
$$

$$
\begin{aligned}
& \frac{3(x+5)^{2}}{3}=\frac{40}{3} \\
& \sqrt{(x+5)^{2}}= \pm \sqrt{\frac{40}{3}} \\
& x+5= \pm \sqrt{\frac{40}{3}} \\
& x=-5 \pm \sqrt{\frac{40}{3}}
\end{aligned}
$$

$$
x=7
$$

$$
x=-1
$$

$$
\text { d) }-2 x^{2}+4 x+3=0
$$

d) $-2 x^{2}+4 x+3$

$$
\begin{aligned}
& ? \cdot ?=-6 \\
& ?+?=4
\end{aligned}
$$

vertex form! notfactorable

$$
\begin{array}{ll}
\left.x=-5+\sqrt{\frac{40}{3}} \right\rvert\, x=-5-\sqrt{\frac{40}{3}} & x=\frac{-b}{2 a}=\frac{-4}{2(-2)}=1 \\
0=-2(x-1)^{2}+5 & =-2 x^{2}+4 x+3 \\
\frac{-5}{-2}=\frac{-2(x-1)^{2}}{-2} & =-2+4+3 \\
\pm \sqrt{\frac{5}{2}}=\sqrt{(x-1)^{2}} & \\
\pm \sqrt{\frac{5}{2}}=x-1 & (p, q)=(1,5) \Rightarrow \text { vent } \\
1 \pm \sqrt{\frac{5}{2}}=x & y=-2(1)^{2}+4(1)+3 \\
&
\end{array}
$$

Ex. blah blah... rocket.. blah blah $h(x)=-0.04 x^{2}+2 x+8$, where $\mathrm{h}=$ height (m) and $\mathrm{x}=$ horizontal distance (m). Where does the rocket land? we are looking for the zeroes of $h(x)$
\rightarrow set $h(x)=0$

$$
0=-0.04 x^{2}+2 x+8
$$

covert to V-F. using

$$
\begin{aligned}
& x=\frac{-b}{2 a}=\frac{-2}{2(-0.04)}=25 \\
& \begin{aligned}
h(25) & =-0.04(25)^{2}+2(28)+8 \\
& =33
\end{aligned}
\end{aligned}
$$

\rightarrow vertex form $\Rightarrow h(x)=-0.04(x-25)^{2}+33$
Now set $h(x)=0$ and solve for x

$$
\begin{aligned}
& 0=-0.04(x-25)^{2}+33 \\
& \frac{-33}{}=-0.04(x-25)^{2} \\
&-0.04-0.04 \\
& \pm \sqrt{825}=\sqrt{(x-25)^{2}} \quad \begin{array}{l}
\text { since the rocket with } \\
\text { only land in the } \Theta \\
\text { direction, I only need }
\end{array} \\
& \pm \sqrt{825}=x-25 \quad \text { to consider... } \\
& 25 \pm \sqrt{825}=x \quad x=25+\sqrt{825}=53.7 \mathrm{~m}
\end{aligned}
$$

$$
x=25-\sqrt{825}
$$

$x=-3.7$ not
\therefore the rocket lands 53.7 m from the larch site
Homefun: Pg. 240 \#(3 -6)ace, 8, 9, 11, 13-17, 19, 15 last
Anywhere it says... complete the square... just convert to vertex form.

