4.3
\#18. $\quad 6 \sqrt[4]{3} \times 6^{4}$
\# 12

$$
\begin{aligned}
& =\sqrt[4]{3 \times 1296} \\
& =\sqrt[4]{3888}
\end{aligned}
$$

H17.a) $\sqrt[4]{48}$

$$
\begin{aligned}
& =\sqrt[4]{16 \times 3} \\
& =\sqrt[4]{16} \times \sqrt[4]{3} \\
& =2 \sqrt[4]{3}
\end{aligned}
$$

p.212\#23

$$
\begin{aligned}
& \sqrt{\frac{2}{3}}=\text { yes } \\
&= \frac{\sqrt{2}}{\sqrt{3}} \\
& \sqrt{\sqrt{2}}=\text { irrationd } \\
& \sqrt{N O}
\end{aligned}
$$

$$
\begin{aligned}
& \text { a) } 3 \sqrt{2} \times 3^{2} \\
& =\sqrt{18} \\
& \text { i) }
\end{aligned}
$$

4.4 Rational Exponents and Radicals

Recall:

$$
\left(x^{a}\right)\left(x^{b}\right)=x^{a+b} \quad \frac{\left(x^{a}\right)}{\left(x^{b}\right)}=x^{a-b} \quad\left(x^{a}\right)^{b}=x^{a \cdot b}
$$

Consider the following:

$$
\begin{aligned}
&\left(5^{1 / 2}\right)\left(5^{1 / 2}\right) \\
&= 5^{1 / 2+1 / 2} \\
&= 5^{2 / 2}=S^{1} \quad \begin{array}{l}
\text { and } \\
\left.0 \cdot S^{1 / 2}=\sqrt{5}\right)(\sqrt{5})
\end{array}=\sqrt{5 \cdot 5} \\
&= \sqrt{25} \\
&= 5
\end{aligned}
$$

Similarly:

$$
\begin{array}{rlr}
& \left(5^{1 / 3}\right)\left(5^{1 / 3}\right)\left(5^{1 / 3}\right) & \text { and } \\
5^{1 / 3+1 / 3+1 / 3} & (\sqrt[3]{5})(\sqrt[3]{5})(\sqrt[3]{5}) \\
= & 5^{3 / 3}= & \sqrt[3]{5 \cdot 5 \cdot 5} \\
= & 5 & =5^{1 / 3}=\sqrt[3]{5} \quad= \\
= & 5
\end{array}
$$

* If n is a natural number and x is a rational number then

$$
x^{1 / n}=\sqrt[n]{x}
$$

b) $(-64)^{1 / 3}$
c) $32^{1 / 5}$

$$
=\sqrt[3]{-64}
$$

$$
=-4
$$

$=\sqrt[5]{32}$
$=2$

* And if the numerator of the exponent is not 1 \qquad

$$
x^{\frac{m}{n}}=\sqrt[n]{x^{m}} \theta(\sqrt[n]{x})^{m}
$$

ex. Express as a power
a) $\sqrt[3]{5^{2}}$
b) $(\sqrt[4]{7})^{3}$
$=5^{2 / 3}$
$=7^{3 / 4}$
ex. Express as a radical, then evaluate find the value of
a) $15^{2 / 3}$
b) $(-27)^{4 / 3}$

$$
=\sqrt[3]{15^{2}}
$$

$=\sqrt[3]{(-27)^{4}}$ or $(\sqrt[3]{-27})^{4}$

$$
(\sqrt[3]{15})^{2}=6.08
$$

$=(-3)^{4}$
$=81$
c) $(0.01)^{3 / 2}$
$=\left(\frac{1}{100}\right)^{3 / 2}$
$=\frac{(1)^{3 / 2}}{(100)^{3 / 2}}$
$=\frac{1}{(\sqrt{100})^{3}}$
$=\frac{1}{10^{3}}$
$=\frac{1}{1000}$
homefun: pg. 227 \#3, 4, 6-12, 16-19
d) $(0.75)^{1.2}$
$=\left(\frac{3}{4}\right)^{6 / 5}$
$=\left(\sqrt[5]{\frac{3}{4}}\right)^{6}$
$\div 0.71$
$1.2=$

