$$
\begin{aligned}
& \text { D.OS. Simple Complex } \\
& a^{4}-81 \quad x^{2}+11 x+28 \\
& =\left(a^{2}-9\right)\left(a^{2}+9\right) \\
& =(a+3)(a-3)\left(a^{2}+9\right) \\
& 7 \cdot 4=28 \\
& \text { 7 }+4=11 \\
& (x+7)(x+4) \\
& 2 x^{2}+x-6 \\
& \frac{-3}{3} \cdot 4=-12 \\
& -3+4=1 \\
& \left(2 x^{2}-3 x\right)+(4 x-6) \quad\left(2 x^{2}+4 x\right)+(-3 x-6) \\
& =\underline{x}(2 x-3)+2(2 x-3)=2 x(x+2)-3(x+2) \\
& =(2 x-3)(\underline{x+2})=(x+2)(2 x-3) \\
& 144 \\
& 4 x^{2}-24 x+36-12 \cdot-12=144 \\
& \frac{(2 x-6)(2 x-6)}{-(2 x-6)^{2}}-12+12=-24 \\
& =(2 x-6)^{2} \\
& \begin{array}{l}
\left.0=A B \Rightarrow \begin{array}{l}
(x-5)(x+1)=0 \\
A=0 \text { or } B=0 \\
x-5=0 \text { or } x+c=0 \\
x=5 \quad x=-1
\end{array}\right)
\end{array}
\end{aligned}
$$

\#9. $\quad h(d)=-0.02 d^{2}+0.4 d+1$
a) $0=-0.02 d^{2}+0.4 d+1$

Yet vertex $x=\frac{-b}{2 a}=\frac{-0.4}{2(-0.02)}=\frac{-.4}{-.04}=10$ form:

$$
\begin{aligned}
h_{\max }=h(10) & =-0.02(18)^{2}+.4(10)+1 \\
& =-2+4+1 \\
& =3 \mathrm{~m}
\end{aligned}
$$

$$
\therefore h(d)=-0.02(d-10)^{2}+3
$$

now $0=-0.02(d-10)^{2}+3$

$$
\begin{aligned}
& \begin{array}{l}
-3 \\
-0.02
\end{array}=\frac{-0.02(d-10)^{2}}{-0.02} \\
& \pm \sqrt{150}=\sqrt{(d-10)^{2}} \\
& \pm \sqrt{150}=d-10 \\
& 10 \pm \sqrt{150}=d \Rightarrow d=10+\sqrt{150} \\
& =22.247 \mathrm{~m} \\
& 4 x
\end{aligned} \quad \begin{aligned}
d & =22.2 \\
4 & =10-\sqrt{150} \\
d & =-2.2 \mathrm{~m}
\end{aligned}
$$

\#8

$$
\begin{aligned}
& 80=(4+x)(10+x) \\
& 80=40+14 x+x^{2} \\
& 0=x^{2}+14 x-40 \\
& =-7 \\
& -40=(x+7)^{2}-8 \\
& 40 \sqrt{89}=\sqrt{(x+7)^{2}} \\
& \pm \sqrt{89}=x+7 \\
& -7 \pm \sqrt{89}=x
\end{aligned}
$$

$$
(p, q)=(-7,-89)
$$

$x=-$ answer olocon't matter

$$
x=-7+\sqrt{89}=2.434 \mathrm{~m}
$$

\therefore New

$$
\begin{aligned}
& x_{b}=\frac{-b}{2 a}=\frac{-14}{2(1)} \\
& y_{v}=(-7)^{2}+14(-7)-40\left(\pm \sqrt{89}=\sqrt{(x+7)^{2}}\right. \\
& =49-98-40 \\
& =-89 \\
& \pm \sqrt{89}=x+7 \\
& -7 \pm \sqrt{89}=x
\end{aligned}
$$

\#15. $a x^{2}+b x+c=0$
$x=\frac{-b}{2 a}$ AOS $\Rightarrow p=\frac{-b}{2 a}$
$q=a\left(\frac{-b}{2 a}\right)^{2}+b\left(\frac{-b}{2 a}\right)+c$
$q=2\left(\frac{b^{2}}{4 a^{2}}\right)-\frac{b^{2}}{2 a}+c$

$$
q=\frac{b^{2}}{4 a}-\frac{b^{2}}{2 a}+c
$$

put into verter $0=a(x-p)^{2}+q$ form

$$
\begin{aligned}
& 0=a\left(x+\frac{b}{2 a}\right)^{2}+\left(\frac{b^{2}}{4 a}-\frac{b^{2}}{2 a}+c\right) \\
& \frac{-b^{2}}{4 a}+\frac{2 b^{2}}{2 a}-\frac{c \cdot 4 a}{4 a}=2\left(x+\frac{b}{2 a}\right)^{2} \\
& \frac{-b^{2}}{4 a}+\frac{2 b^{2}}{4 a}-\frac{4 a c}{4 a} \\
& \pm \sqrt{\frac{b^{2}-4 a c}{4 a \cdot a}}=\sqrt{\frac{2}{2}}\left(x+\frac{b}{2 a}\right)^{2} \\
& \pm \frac{\sqrt{b^{2}-4 a c}}{2 a}=x+\frac{b}{2 a} \\
& \frac{-b}{2 a}=\frac{\sqrt{b^{2}-4 a c}}{2 a}=x \\
& \frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=x
\end{aligned}
$$

Journal Quest: Vertex Finding

Using the example: $y=4 x^{2}-4 x-3$, explain how to find the vertex by
a) factoring
b) graphing using technology
c) converting to vertex form

In all cases, explain the details of every step of your solution.

Journal Quest: Vertex Finding

Using the example: $y=4 x^{2}-4 x-3$, explain how to find the vertex by
a) factoring
b) graphing using technology
c) converting to vertex form

In all cases, explain the details of every step of your solution.

Journal Quest: Vertex Finding

Using the example: $y=4 x^{2}-4 x-3$, explain how to find the vertex by
a) factoring
b) graphing using technology
c) converting to vertex form

In all cases, explain the details of every step of your solution.

What's it for?
What is required?
a, b, c a quadratic equi coefficients (in brackets) and (zeroes of a follow BEDMAS. quadratic function) $a x^{2}+b x+c$ follow So what is the formula?

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

From standard form, you can use the quadratic formula to determine the number of zeros.

Ex. How many zeros are there for the following functions:
a. $f(x)=2 x^{2}-3 x-5$ $a=2$

$$
b=-3
$$

$c=-5$
b. $g(x)=4 x^{2}+4 x+1$

$$
\begin{aligned}
& \text { are there for the following functions: } \\
& \begin{aligned}
x & =\frac{-(-3) \pm \sqrt{(-3)^{2}-4(2)(-5)}}{2(2)} \\
& =\frac{3 \pm \sqrt{9+40}}{4}=\frac{3 \pm \sqrt{49}}{4} \times \frac{3+7}{4}=\frac{10}{4}
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& \text { b. } g(x)=4 x^{2}+4 x+1 \\
& x=\frac{-(4) \pm \sqrt{(4)^{2}-4(4)(1)}}{2(4)}=\frac{-4 \pm 0}{8}=\frac{-4}{8}=\frac{-1}{2} \rightarrow 1
\end{aligned}
$$

c. $h(x)=-5 x^{2}+x-2$

$$
\begin{aligned}
& \text { c. } h(x)=-5 x^{2}+x-2 \\
& x=-\frac{(1) \pm \sqrt{(1)^{2}-4(-5)(-2)}}{2(-5)}=\frac{-1 \pm \sqrt{1-40}}{-10}=\frac{-1 \pm \sqrt{(-39}}{-10} .
\end{aligned}
$$

The value of the discriminant, $b^{2}-4 a c$, is enough to tell you the number of zeros for a quadratic equation.

Value of the discriminant	Number of zeros/solutions
$b^{2}-4 a c>0$	positive
$b^{2}-4 a c=0$	sol
$b^{2} s s$	1
$b^{2}-4 a c<0$	negative

discriminant: $\Delta=b^{2}-4 a c$

$$
x=\frac{-b \pm \sqrt{\Delta}}{2 a}
$$

Ex. For what values) of k will the function $f(\boldsymbol{x})=\boldsymbol{k} \boldsymbol{x}^{2}-\mathbf{4 x}+\boldsymbol{1}$ have no real roots, and one root, and two roots?
check the discriminant

$$
\begin{aligned}
\Delta & =b^{2}-4 a c \\
& =(-4)^{2}-4(k)(1) \\
\Delta & =16-4 k
\end{aligned}
$$

a) if $\Delta=0$, one double rot $\left(1\right.$ sol $\left.l^{n}\right)$

$$
\therefore \begin{aligned}
& 0=16-4 k \\
& \frac{4 k}{4}=\frac{16}{4}
\end{aligned} \Rightarrow k=4
$$

b) i

$$
\text { if } \Delta<0 \text {, no real sol ns } \begin{aligned}
& 0>16-4 k \\
& \frac{4 k>16}{4} \frac{16}{4} \rightarrow k>4
\end{aligned} \begin{aligned}
& 0>16-4 k \\
& \frac{-16}{-4} \frac{-4 k}{-4} \\
& 4<k \\
& \text { switehthe sign } \\
& \text { when xor } \sin 46
\end{aligned}
$$

c) \therefore if $k<4$, we get 2 sol vs all the time

