EXPLORE the Math

The school athletic council has five members: Jill, Ted, Rhaj, Yvette, and Martin. This Wednesday, they plan to hold a bake sale.
? How can you count the number of committees of at least two people that can be chosen to sell baked goods during lunch?

Reflecting

A. Share your results and your strategy with several other pairs of students. Discuss any differences.

B. When you considered all the possible committees, was each committee a permutation or a combination of people? Explain. or der does
C. The expression $\frac{5!}{a!b!}$ can be used to determine the number of committees that can be formed from 5 people. What do a and b represent in this expression? Verify that this expression works for all the 2-, 3-, 4- and 5 -person committees you considered. $\frac{5!}{2!3!}$ \qquad \# not in group

$$
\begin{equation*}
\text { It in gray } 2!3! \tag{5}
\end{equation*}
$$

\# not in group
D. Suppose only 1 person is needed for the bake sale. How many ways are there to choose that person? Does the expression in part C work in this situation?
E. What is the relationship between the number of people to choose from, in this case 5 people, and the variables a and b in the expression $\frac{5!}{a!b!}$?

$\frac{5!}{4!!}=5$

$$
E . a+b=5
$$

committee
witter
committer
of $?$
ex// How many of S can be formed
from a people?

$$
\frac{9!}{5!4!}
$$

$$
3 \rightarrow \frac{5!}{3!2!}=10
$$

committees
$4 \Rightarrow$

$$
9 \Rightarrow
$$

$$
\frac{5!}{5!0!}=1
$$

4.5 Exploring Combinations

combination: a group of elements where order does not matter
ex. The elements A, B and C have Six_permutations but if the order of these elements is irrelevant, they have only \qquad combination since ABC is the same as $A C B, B C A, B A C$, etc...

Explore Pg. 271

In Summary

Key Ideas

- When order does not matter in a counting problem, you are determining combinations. For example, $a b c, a c b, b a c, b c a, c a b$, and $c b a$ are the six different permutations of the letters a, b, and c, but they all represent the same single combination of letters.
- When all n objects are being used in each combination, there is only one possible combination.

Need to Know

- From a set of n different objects, there are always fewer combinations than permutations when selecting r of these objects where $r \leq n$. For example, the number of permutations, P, possible using two of the three letters a, b, and c is

$$
\begin{aligned}
& P=\frac{3!}{(3-2)!} \\
& P=6
\end{aligned}
$$

The six permutations are $a b, b a, a c, c a, b c$, and $c b$. However, of these six permutations, only $a b, a c$, and $b c$ are different two-letter combinations.

Homework: pg. 272 \#1-4

