4.6 Applying Exponent Laws

Recall again: $\left(\frac{a}{b}\right)^{x}=\frac{a^{x}}{b^{x}}$

$$
(a b)^{x}=a^{x} b^{x}
$$

$$
\text { ex. }\left(\frac{2}{5}\right)^{2}=\frac{2^{2}}{5^{2}}=\frac{4}{25} \quad \text { ex. }(2 x)^{3}=2^{3} x^{3}=8 x^{3}
$$

\square
ex. Simplify then evaluate if $a=-3 \& b=2$

$$
\begin{align*}
& \overline{\left(\frac{a^{6} b^{9}}{a^{5} b^{8}}\right)^{-2}}=\left(\frac{a^{5} b^{8}}{a^{6} b^{9}}\right)^{2} \\
&=\left(a^{5-6} b^{8-9}\right)^{2} \tag{1}\\
&=\left(a^{-1} b^{-1}\right)^{2} \\
&=\left(\frac{1}{a b}\right)^{2}=\frac{1}{(-3)^{2}(2)} \\
&=\frac{1}{a^{2} b^{2}}
\end{align*}
$$

ex. Simplify as a single power
a) $\left[\left(\frac{-3}{2}\right)^{-4}\right]^{2} \cdot\left[\left(\frac{-3}{2}\right)^{2}\right]^{3}$

$$
\text { b) }\left(\frac{7^{2 / 3}}{7^{1 / 3} \cdot 7^{5 / 3}}\right)^{6}=\left(\frac{7^{2 / 3}}{7^{2}}\right)^{6}
$$

$$
=\left(-\frac{3}{2}\right)^{-8} \cdot\left(-\frac{3}{2}\right)^{6}
$$

$$
\begin{align*}
& =\left(-\frac{3}{2}\right)^{-8+6} \\
& =\left(-\frac{3}{2}\right)^{-2}=\left(-\frac{2}{3}\right)^{2}
\end{align*}
$$

c) $(1.4)^{3}(1.4)^{4}$
$(1.4)^{-2}$
$=\frac{(1.4)^{7}}{(14)^{-2}}$
$(1.4)^{-2}$

$$
=1.4^{7-(-2)}
$$

$=1.4^{9}$
$=\frac{1}{7^{8}}$
$=7^{-8}$
$=\left(7^{-4 / 3}\right)^{6}=\frac{4}{3} \times \frac{6}{1}$

ex. Simplify

a) $\left(x^{3} y^{2}\right)\left(x^{2} y^{-4}\right)$
b) $\frac{6 x^{3} y^{-3}}{774 x y^{2}}$

$$
\begin{aligned}
& =x^{3+2} y^{2-4} \\
& =x^{5} y^{-2} \\
& =\frac{x^{5}}{y^{2}} \\
& \text { c) }\left(x^{3 / 2} y^{2}\right)\left(x^{1 / 2} y^{-1}\right) \\
& =x^{3 / 2+1 / 2} \cdot y^{2+(-1))} \\
& =x^{4 / 2} \cdot y^{\prime} \\
& =x^{2} y
\end{aligned}
$$

\square

d) $\frac{4 a^{-2} b^{2 / 3}}{2 a^{2} b^{1 / 3}}=\frac{2 a^{-2-2} b^{2 / 3-1 / 3}}{1}$

$$
=\frac{2 a^{-4} b^{1 / 3}}{1}
$$

$$
=\frac{2 b^{1 / 3}}{a^{4}}
$$

e) $\left(\frac{100 a^{\prime}}{25 a^{5} b^{-1 / 2}}\right)^{1 / 2}=\left(\frac{4 a^{1-5}}{b^{-1 / 2}}\right)^{1 / 2}$

$$
=\left(\frac{4 a^{-4}}{b^{-1 / 2}}\right)^{1 / 2}=\left(\frac{4^{1} b^{1 / 2}}{a^{4}}\right)^{1 / 2}=\frac{4^{1 / 2} b^{1 / 4}}{a^{2}}=\frac{2 b^{1 / 4}}{a^{2}}
$$

ex. A sphere has a volume of $425 \mathrm{~m}^{3}$. What is the radius of the sphere to the nearest tenth of a meter?

$$
V=\frac{4}{3} \pi r^{3}
$$

$$
\left(\frac{3}{4}\right) 425=\left(\frac{3}{4}\right) \frac{4}{3} \pi r^{3}
$$

$$
\begin{aligned}
& \sqrt[3]{\frac{3(425)}{4 \pi}}=\sqrt[3]{\frac{\pi r^{3}}{\pi}} \\
& \sqrt[3]{101.46}=\sqrt[3]{r^{3}}
\end{aligned}
$$

$$
r=4.664 \mathrm{~m}
$$

homefun: pg. 241 \#(3-11)aceg, 12-16, 21-23

