4.6 Kinetic Energy

Kinetic Energy: Energy of motion. Still scalar... still measured in Joules

$$
\begin{aligned}
& E_{k}=\frac{1}{2} m v^{2} \quad \text { where: } \quad m=\text { mass } \\
& v=\text { speed (not velocity) }
\end{aligned}
$$

ex. A 60.0 kg student is running at a uniform speed of $5.70 \mathrm{~m} / \mathrm{s}$. What is the kinetic energy of the student?

$$
\begin{gathered}
E_{k}=\frac{1}{2} m v^{2}=\frac{1}{2}(60.0)(5.70)^{2} \\
\mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}^{2}
\end{gathered}=975 \mathrm{~J}
$$

ex. The kinetic energy of a 2.1 kg rotten tomato is $1.00 \times 10^{3} \mathrm{~J}$. How fast is it moving?

$$
\begin{aligned}
E_{k}=\frac{1}{2} m v^{2} \Rightarrow \sqrt{v^{2}}=\sqrt{\frac{2 E_{k}}{m}} \Rightarrow v & =\sqrt{\frac{2(1000)}{2.1}} \\
& =31 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

The Work-Energy Theorem: If a net force acts on an object, it must be accelerating. This net force must be proportional to its change in E_{k}. Therefore,

$$
\Delta \mathrm{E}_{\mathrm{k}}=\mathrm{F}_{\mathrm{net}} \mathrm{~d}
$$

ex. A sprinter exerts a net force of 260 N over a distance of 35 m . What is his change in kinetic energy?

$$
\begin{aligned}
\Delta E_{k} & =F_{\text {net }} d \\
& =(260 \mathrm{~N})(35 \mathrm{~m}) \\
& =9100 \mathrm{~J}
\end{aligned}
$$

ex. A student pushes a 25 kg crate which is initially at rest with a force of 160 N over a distance of 15 m . If there is 75 N of friction, what is the final speed of the crate?

$$
\begin{aligned}
\Delta E_{k} & =F_{\text {nat }} \Delta d \\
& =(85 \mathrm{~N})(15 \mathrm{~m}) \\
& =1275 \mathrm{~J}
\end{aligned}
$$

practice: handout - Kinetic Energy \#1-8

$$
\text { but } \vec{F}_{\text {net }} d=\frac{1}{2} m v^{2}
$$

$$
\begin{aligned}
& V=10.099 \mathrm{~m} / \mathrm{s} \\
& V=1.0 \times 10^{1} \mathrm{~m} / \mathrm{s}
\end{aligned} \quad \begin{aligned}
& \frac{1275}{25}=\frac{1}{2}(25) \mathrm{V}^{2} \\
& \sqrt{102}=\sqrt{V^{2}}
\end{aligned}
$$

