4.8 Power and Efficiency

Power is the rate of doing work. Power is measured in J/s or Watts (W).

$$P = \frac{W}{t} = \frac{\Delta E}{t}$$

ex. The Nose route of El Capitan is a 915 m vertical climb in Yosemite Park, California. Alex Honnold and Tommy Caldwell recently crushed the old record with a time of 1 hour, 58 minutes. If Alex weighed 72 kg when he set the record, what was his average power output during the climb?

$$P = \frac{W}{t} = \frac{\Delta t p}{t} = \frac{mg\Delta h}{t} = \frac{72 kg \sqrt{9.8 m/s^2} \sqrt{9/5 m}}{7080 s}$$

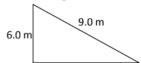
$$\frac{13480}{7080 s}$$

$$\frac{13480}{7080 s}$$

$$\frac{1}{1080 s}$$

ex. A 1.00×10^3 kg car accelerates from rest to a velocity of 15.0 m/s in 4.00 s. Calculate the power output of the car. Ignore friction.

$$P = \frac{W}{t} = \frac{E_k}{t} = \frac{1}{2} \frac{m V_f^2}{t} = \frac{1}{2} \frac{(1000 \text{ kg})(15 \text{ m/s})^2}{4.00}$$
acceleration
Thereases E_k


Another useful formula... Since
$$P = \frac{W}{t} = \frac{V}{t}$$
 and $V = \frac{d}{t}$

Therefore: P = FV Note: this is only useful for **constant** velocity.

ex. Stu Dent uses 140 N to push a block up a ramp at a constant velocity of 2.2 m/s. What is Stu's power output?

$$P = Fv = (140N)(2.2 \text{ m/s})$$
 $P = 310 \text{ W}$

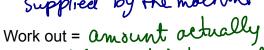
1) A 45.0 kg student runs at a constant velocity up the incline shown. If the power output of the student is 1.50×10^3 W, how long does it take the student to run the 9.0 m along the incline?

3) A 2.00 kg object is accelerated uniformly from rest to 3.00 m/s while moving 1.5 m across a level frictionless surface. Calculate the power output.

2) A 20.0 kg object is lifted vertically 2.50 m in 2.00 s at a constant velocity. Calculate the power output of the student.

4) An 8.5×10^2 kg elevator is pulled up 32.0 m at a constant velocity of 1.40 m/s. Calculate the power output of the motor.

1) 1.8 s 2) 245 W 3) 9.0 W 4) 12000 W


Efficiency is a measure of how much work is done by a machine compared to how much energy goes into it. Machines are particularly useful because they allow us to use less force over a longer distance to do the same work.

The 2nd law of Thermodynamics states that whenever work is done, some energy is converted to heat.

Therefore:

$$W_{in} > W_{out}$$

Work in = to tal energy Supplied by the machine

INCLINED SCREW

WEDGE

PULLEY

hold (converted to a worful farm)

Simple Machines

The efficiency of a machine is:

Eff =
$$\frac{W_{out}}{W_{in}}$$
 x 100% OR Eff = $\frac{P_{out}}{P_{in}}$ x 100%

There are no units for efficiency. It is expressed as a ratio or percentage.

* use the decimal equivalent to do calculations

ex. A lever is used to lift a 50.0 kg object 10.0 cm. To do this we must apply a force of 75 N to the end of the lever which displaces 1.00 m. Find the efficiency of the lever.

end of the lever which displaces 1.00 m. Find the

er.

$$W_{1N} = FL = (75 \text{ N})(1.00 \text{ m})$$

$$= 75 \text{ J}$$

$$V_{2} = V_{2} = V_{3} = V_{$$

Practice:

- 1) A 5.00 x 10² W electric motor lifts a 20.0 kg object 5.00 m in 3.5 S. What is the efficiency of the motor?
- 2) A 955 kg car accelerates uniformly from rest to 16.0 m/s while moving 18.0 m across a level surface. If the car uses 325 000 W of power, what is the efficiency of the car?

- 2) If a 100.0 W motor has an efficiency of 82%, how long will it take to lift a 50.0 kg object to a height of 8.0 m?
- 4) An 850 kg elevator is pulled up at a constant velocity of 1.00 m/s by a 10.0 kW motor. Calculate the efficiency of the motor.