5.1b Radicals

* To compare radicals, write them in their entire form and compare the radicands. They must have the same index.
ex. put the following in increasing order:

$$
\begin{gathered}
\frac{5}{=\sqrt{5^{2}}}=\sqrt{3^{2} \cdot 3}=\sqrt{2^{2} \cdot 0} \\
=\sqrt{25}=\sqrt{27}=\sqrt{24} \\
\quad \therefore \sqrt{23}<2 \sqrt{6}<5<3 \sqrt{3}
\end{gathered}
$$

* to add radicals, you must group like terms
ex.
a) $2 \sqrt{7}+8 \sqrt{7}=10 \sqrt{7}$
c) $\sqrt{20 x}-3 \sqrt{45 x} x_{3}$
b)

$$
\begin{aligned}
\sqrt{24}-\sqrt{6} & =\sqrt{4 \cdot 6}-\sqrt{6} \\
& =2 \sqrt{6}-\sqrt{6} \\
& =\sqrt{6}
\end{aligned}
$$

$$
=\sqrt{4 \cdot 5 x}-3 \sqrt[3]{9.5 x}
$$

$$
=2 \sqrt{5 x}-9 \sqrt{5 x}=-7 \sqrt{5 x}
$$

ex. Calculate length $A B$ exactly

$$
\begin{aligned}
\tan 30^{\circ} & =\frac{40}{A C} \\
\overline{A C} & =\frac{40}{\tan 30^{\circ}} \\
\overline{A C} & =\frac{40}{1 / \sqrt{3}}=40 \div \frac{1}{\sqrt{3}} \\
& =40 \times \frac{\sqrt{3}}{1}=40 \sqrt{3} \\
\therefore A B & =40 \sqrt{3}+30 \sqrt{3} \\
\therefore & =70 \sqrt{3}
\end{aligned}
$$

$$
\overline{A B}=\overline{A C}+\overline{C B}
$$

since I have a special Δ

$$
\begin{aligned}
\therefore \frac{C B}{\sqrt{3}} & =\frac{30}{1} \\
C B & =30 \sqrt{3}
\end{aligned}
$$

your turn: pg. 277

Definition: a radical in simplified form has the following properties

* the radicand contains no fractions
* there are no perfect roots left as factors of the radicand
* there is no radical in the denominator
ex.

$$
\begin{aligned}
& \text { a) } \sqrt{\frac{3}{5}}=\frac{\sqrt{3}}{\sqrt{5}} \cdot\left\{\frac{\sqrt{5}}{\sqrt{5}}=\frac{\sqrt{15}}{5}\right. \\
& \sqrt{1} \cdot \sqrt{1}=心
\end{aligned}
$$

b)

$$
\begin{aligned}
\sqrt{20} & =\sqrt{4+5} \\
& =2 \sqrt{5}
\end{aligned}
$$

Property: A radical with an even index can only represent a real number if the radicand is positive or zero. There are no restrictions on radicals with odd indexes.
ex.a) $\sqrt{-3}$ has no
b) $\sqrt[3]{-27}=-3$
real roots
since $(-3)^{3}=-27$

* for $\sqrt{16-x}$ to be a real number, $16-\underset{x \geq 0}{ }$

$$
16 \geqslant x
$$

$\sqrt[3]{16-x}$ will always be a real number \rightarrow no restrictions on the domain

* Recall: when multiplying or dividing an inequality by a negative number, you MUST change the sign of the inequality. ex.

$5-3 x \geqslant 0$

$$
\frac{5}{3} \geqslant \frac{3 x}{3}
$$

$\frac{5}{3} \geq x$
homefur: pg. 278 \#8-11, 15,17-20, 23-25

