$$
\begin{aligned}
& 23,9 d, 10 d, 15 \\
& \text { qd) } \begin{array}{l}
\frac{2}{3} \sqrt[3]{81}+\frac{\sqrt[3]{375}}{4}-4 \sqrt{99}+5 \sqrt{11} \\
=\frac{2}{3} \sqrt[3]{27 \cdot 3}+\frac{1}{4} \sqrt[3]{125 \cdot 3}-4 \sqrt{9 \cdot 11}+5 \sqrt{11} \\
=\frac{2}{3}(3) \sqrt[3]{3}+\frac{1}{4}(5) \sqrt[3]{3}-4(3) \sqrt{11}+5 \sqrt{11} \\
=\frac{4 \times 3 \sqrt[3]{3}}{1 \times 4}+\frac{5}{4} \sqrt[3]{3}-12 \sqrt{11}+5 \sqrt{11} \\
=\frac{13}{4} \sqrt[3]{3}-7 \sqrt{11} \\
10 d) \frac{w \sqrt[3]{-64}+\frac{\sqrt[3]{512 w^{3}}}{5}-\frac{2}{5} \sqrt{50 w}-4 \sqrt{2 w}}{5} \\
=\frac{w(-4)}{5}+\frac{8 w}{5}-\frac{2}{5} \sqrt{25 \cdot 2 w}-4 \sqrt{2 w} \\
=-\frac{4 w}{5}+\frac{8 w}{5}-\frac{10}{5} \sqrt{2 w}-4 \sqrt{2 w} \\
=\frac{4 w}{5}-6 \sqrt{2 w}
\end{array}
\end{aligned}
$$

15.

$$
\begin{aligned}
& A_{0}=38 \pi \mathrm{~m}^{2} \\
& \text { b) } x^{2}+x^{2}=d^{2} \text { \& pythagoras } \\
& \begin{array}{l}
\therefore P=4 x \quad \& \quad 2 x^{2}=(2 \sqrt{38})^{2} \\
\therefore x^{2}=4(38)
\end{array} \\
& =4(2 \sqrt{1 q}) \quad \frac{2 x^{2}}{2}=\frac{4(38)}{2} \\
& p=8 \sqrt{19} \\
& \sqrt{x^{2}}=\sqrt{76} \Rightarrow x=\sqrt{76} \\
& x=\sqrt{19 \cdot 4} \\
& \text { *23. } \sqrt{27},-, 9 \sqrt{3}
\end{aligned}
$$

$$
\begin{aligned}
& \sqrt{27+3 d}=9 \sqrt{3} \\
& 3 d=9 \sqrt{3}-\sqrt{27} \\
& 3 d=9 \sqrt{3}-3 \sqrt{3} \\
& \frac{3 d}{3}=\frac{6 \sqrt{3}}{3} \rightarrow 3 \sqrt{9-3} \\
&=3
\end{aligned}
$$

5.2a Operations with Radicals

* To multiply and divide radicals we must remember the following properties:

$$
\sqrt[n]{a} \cdot \sqrt[n]{b}=\sqrt[n]{a b} \quad \frac{\sqrt[n]{a}}{\sqrt[n]{b}}=\sqrt[n]{\frac{a}{b}}
$$

Note: the indexes MUST always be the SAME

$$
\begin{aligned}
& \text { ex. a) }(2 \sqrt{3})(5 \sqrt{5}) \\
&= 2 \cdot 5 \cdot \sqrt{3 \cdot 5} \\
&= 10 \sqrt{15}
\end{aligned}
$$

$$
\text { c) }(7 \sqrt{3})(5 \sqrt{5}-6 \sqrt{3})
$$

$$
=35 \sqrt{15}-42 \sqrt{9}
$$

$$
=35 \sqrt{15}-42(3)
$$

$$
=35 \sqrt{15}-126
$$

e) $9 \sqrt[3]{2 w}\left(\sqrt[3]{8 w^{2}}-3\right)$

$$
=9 \sqrt[3]{16 w^{3}}-27 \sqrt[3]{2 w}
$$

$$
=9 \sqrt[3]{8 \cdot 2 \omega^{3}}-27 \sqrt[3]{2 \omega}
$$

$$
=9(2 w) \sqrt[3]{2}-27 \sqrt[3]{2 w}
$$

$$
=18 w \sqrt[3]{2}-27 \sqrt[3]{2 w}
$$

b) $(2 \sqrt{7})(4 \sqrt{75})$

$$
\begin{aligned}
& \text { AME } \\
& =(2 \sqrt{7})(4 \sqrt[4]{25.3}) \\
& =(2 \sqrt{7})(20 \sqrt{3}) \\
& =40 \sqrt{21}
\end{aligned}
$$

d) $(8 \sqrt{2}-5)(4-3 \sqrt{2})$

$$
\begin{aligned}
& =32 \sqrt{2}-24\left((2)^{2-48}-20+15 \sqrt{2}\right. \\
& =47 \sqrt{2}-68
\end{aligned}
$$

$$
\text { f) } \frac{\sqrt[3]{6}}{2 \sqrt[3]{3}}=\frac{4}{2} \cdot \sqrt[3]{\frac{6}{3}}
$$

$$
=2 \sqrt[3]{2}
$$

