5.2b Operations with Radicals

* Rationalizing a denominator means removing the radicals (the irrational part) from the denominator.

Case 1: The denominator is of the form $a \sqrt{b}$. Only the \sqrt{b} part needs "fixing".

$$
\begin{array}{ll}
\text { ex. a) } \frac{5}{2 \sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}} & \text { b) } \frac{4 \sqrt{11}}{3 \sqrt[3]{6}} \cdot\left(\frac{\sqrt[3]{6}}{\sqrt[3]{6}}\right)^{2} \\
=\frac{5 \sqrt{3}}{2(3)}=\frac{4 \sqrt{11} \cdot \sqrt[3]{36}}{3 \sqrt[3]{6} \cdot(\sqrt[3]{6})^{2}} \quad \sqrt[3]{2} \cdot \sqrt[3]{2} \cdot \sqrt[3]{2}=\sqrt[3]{8}=2 \\
=\frac{5 \sqrt[3]{3}}{6}=\sqrt[3]{11} \cdot \sqrt[3]{11}=\sqrt[11]{2} \\
=\sqrt[4]{11} \cdot \sqrt[3]{36} \\
\sqrt{11} \cdot \sqrt{11}=u=\frac{2 \sqrt{11} \cdot \sqrt[3]{36}}{9}
\end{array}
$$

Case 2: The denominator is a binomial with radicals.

$$
\text { ex. } \frac{3}{5-\sqrt{ } 2}
$$

Definition: two binomial factors are called conjugates if their product is the difference of two squares... $(a+b)$ and $(a-b)$ are conjugates

$$
\text { recall: } \left.(a+b)(a-b)=a^{2}-b^{2} \text { ex// } 2+\sqrt{5}\right) \text { and }(2-\sqrt{5})
$$

* To simplify case 2 expressions. we must multiply both numerator and denominator by the -conjugate of the denominator

$$
\begin{aligned}
& \text { ex. } \frac{3}{5-\sqrt{2}} \frac{5+\sqrt{2}}{5+\sqrt{2}} \\
= & \frac{15+3 \sqrt{2}}{25+5 \sqrt{2}-5 \sqrt{2}-2} \\
= & \frac{15+3 \sqrt{2}}{23}
\end{aligned}
$$

homefun: pg. 289 \#8-14, 16-20, 22-25

