5.3 Equations containing radicals

- * Restrictions on a variable exist when:
 - > The denominator \s = 2400
 - > The radicand is <u>negative</u> for even indices

ex. State the restrictions for:

a)
$$\frac{3}{2x-8} = \sqrt{2x-5}$$

$$2x-8 \neq 0$$

$$2x + 8$$

$$2x \Rightarrow 5$$

$$x \neq 4$$

$$x \Rightarrow -1$$

$$x^2 + 1 \Rightarrow 0$$

$$x^2 + 1 \Rightarrow 0$$

$$x^2 \Rightarrow -1$$

$$x \Rightarrow -1$$

$$x \Rightarrow -1$$

ex. State the restrictions for.

a)
$$\frac{3}{2x-8} = \sqrt{2x-5}$$

b) $\sqrt{5-4x} = 3x-5$
 $2x-8 \neq 0$
 $2x-8 \neq 0$
 $2x-8 \neq 0$
 $2x \neq 8$
 $2x \geq 5$
 $2x \neq 8$
 $3x \neq 8$

* When solving equations containing radicals, the key is to __isb ate__ the radical on one side of the equation, then <u>Square</u> both sides to eliminate the radical.

NOTE: When squaring both sides, we lose accuracy. Therefore, we must always verify our answers in the ______ equation.

ex.
$$5 + \sqrt{2x + 1} = 12$$

solution:

$$\sqrt{2x+1} = 7$$

 $2x+1 = 49$
 $2x = 48$
 $2x$

restrictions:
$$2 \times + 1 \ge 6$$

 $2 \times \ge -1$
 $2 \times \ge -1$
verification:

 $LS = 5 + \sqrt{2(24)} + 1$ = 5 + \ 49 -R6

