5.3 Equations containing radicals

* Restrictions on a variable exist when:
$>$ The denominator $15=2$ ers
$>$ The radicand is negative for even indices
ex. State the restrictions for:
a) $\frac{3}{2 x-8}=\sqrt{2 x-5}$
$2 x-\overrightarrow{8 \neq 0}$

$$
2 x-\overrightarrow{5 \geqslant 0}
$$

$$
\frac{2 x}{2} \neq \frac{8}{2}
$$

$x \neq 4$
C) $5=\sqrt{x^{2}+1}$

$$
\text { 1. } \quad \begin{aligned}
& x^{2}+1 \geqslant 0 \\
& x^{2} \geqslant-1
\end{aligned}
$$

b) $\frac{1}{\sqrt{5-4 x}}=3 x-5$
since $5-4 x$ is both a radicand AND a denonimetor

* When solving equations containing radicals, the key is to isolate the radical on one side of the equation, then Square both sides to eliminate the radical.

NOTE: When squaring both sides, we lose accuracy. Therefore, we must always verify our answers in the \qquad original equation.
ex. $5+\sqrt{2 x+1}=12$

$$
\begin{aligned}
& (\sqrt{2 x+1})^{\text {solution i }}=(7)^{2} \\
& 2 x+1=49 \\
& \frac{2 x=\frac{48}{2}}{2} \\
& x=24 \\
& \begin{array}{c}
\text { satisfies my } \\
\text { restriction }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { restrictions: } 2 x+\overrightarrow{1} \geqslant 0 \\
& \frac{2 x}{2} \geqslant \frac{-1}{2} \\
& x \geqslant \frac{1}{2} \\
& \text { verification: } \\
& L S= 5+\sqrt{2(24)+1} \\
&= 5+\sqrt{49} \\
&= 5+7 \therefore \text { since } L S=R S \\
&= 12 \\
&= x=24 \\
& \text { RS S }
\end{aligned}
$$

$$
\begin{aligned}
& \text { ex. Solve } n-\sqrt{5-n}=-7 \\
& (n+7)^{2}=(\sqrt{5-n})^{2} \\
& \text { restrictions: } 5-n \geqslant 0 \\
& 5 \geqslant n \\
& (n+7)(n+7)=5-n \\
& n^{2}+14 n+49=5-n \\
& n^{2}+15 n+44=0 \\
& \frac{4}{4} \cdot 11=44 \\
& \frac{4}{4}+11=15 \\
& (n+4)(n+11)=0 \\
& n=-4 \quad n-4 \\
& L S=(-4)-\sqrt{5-(-4)} \\
& =-4-\sqrt{9} \\
& =-4-3 \\
& =-7 \\
& \text { =RS } \\
& L S=(-11)-\sqrt{5-(-1)} \\
& =-11-\sqrt{16} \\
& =-11-4 \\
& =-15 \\
& \text { *RS } \\
& \text { ex. Solve } 7-\sqrt{3 x}=\sqrt{5 x+4}+5 \\
& \begin{array}{l}
\begin{array}{l}
\text { solution: } \\
(2)^{2}=(\sqrt{5 x+4}+\sqrt{3 x})^{2} \\
4=(\sqrt{5 x+4}+\sqrt{3 x})(\sqrt{5 x+4}+\sqrt{3 x})
\end{array} \\
4=5 x+4+3 x+2 \sqrt{3 x(5 x+4)}
\end{array} \\
& \begin{aligned}
-\frac{8 x}{2}=\frac{2 \sqrt{15 x^{2}+12 x}}{2} \quad 2 & =7-\sqrt{3(0)} \\
& =7
\end{aligned} \\
& (-4 x)^{2}=\left(\sqrt{15 x^{2}+12 x}\right)^{2} \quad R S=7 \\
& 16 x^{2}=15 x^{2}+12 x \\
& x^{2}-12 x=0 \\
& x(x-12)=0 \\
& x=0, x \geq 12 \\
& \text { Recall: } \\
& L S=7-\sqrt{3(12)} \\
& =7-\sqrt{36} \\
& =1 \\
& \begin{aligned}
R S & =\sqrt{5(12)+4}+5 \\
& =\sqrt{60+4}+5
\end{aligned} \\
& =8+5 \\
& =1 \text { ? } \\
& L_{S} \neq R \\
& \text { pg. } 300 \text { \#1, 4, 6-10, 12-14, 17, 18, } 21
\end{aligned}
$$

