5.5 Conditional Probability

Monty Hall dilemma pg. 343

Dependent Events: events whose outcomes are affected by each other ex. when drawing 2 cards from a deck, the probability of drawing an ace depends on whether or not an ace was drawn the first time

Conditional Probability: the probability of an event occurring given that another event has already occurred

A computer manufacturer knows that, in a box of 100 chips, 3 will be defective. Jocelyn will draw 2 chips, at random, from a box of 100 chips.
(? What is the probability that both of the chips will be defective?

EXAMPLE 1 Calculating the probability of two events

Determine the probability that Jocelyn will draw 2 defective chips.

$$
\begin{aligned}
& P(2 \text { defects })=\frac{3}{100} \cdot\left(\frac{2}{99}\right)^{8}=\frac{6}{9900} \\
& =\frac{1}{1650} \quad 1 \text { st defect } 2^{\text {nd }} \text { defect }
\end{aligned}
$$

Communication Tip
$P(B \mid A)$ is the notation for a conditional probability. It is read "the probability that event B will occur, given that event A has already occurred."

EXAMPLE 2 Calculating the conditional probability of a pair of dependent events

Nathan asks Riel to choose a number between 1 and 40 and then say one fact about the number. Riel says that the number he chose is a multiple of
4. Determine the probability that the number is also a multiple of 6 , using each method below.
a) A Venn diagram
b) A formula
$A=\{$ multiples of 4$\}$ $4,8,12,16,20,24,28,32,36,40$

$p(4 \cap 6)=\frac{3}{10}$

$3 / 40$

$10 / 40$

EXAMPLE 3 Solving a conditional probability problem

According to a survey, 91% of Canadians own a cellphone. Of these people, 42% have a smartphone. Determine, to the nearest percent, the probability that any Canadian you met during the month in which the survey was conducted would have a smartphone.

Your Turn everyone

$$
\begin{array}{rlrl}
P(s \cap C) & =42 \eta_{0} \text { of } q 1 q_{0} & 0.42 & =\frac{P(S \cap C)}{0.91} \\
=(42)(.21) & (0.42)(0.91) & =P(S \cap C) \\
e & =38.22 q_{0} & 0.3822 & =P(S \cap C) \\
& &
\end{array}
$$

a) Determine, to the nearest percent, the probability that any Canadian
you met in that month would have a cellphone but not a smartphone
b) How could you represent this probability in a Venn diagram?
a) Determine, to the nearest percent, the probability that any Canadian
you met in that month would have a cellphone but not a smartphone.
b) How could you represent this probability in a Venn diagram?
a) Determine, to the nearest percent, the probability that any Ca
you met in that month would have a cellphone but not a smart
b) How could you represent this probability in a Venn diagram?

$$
\text { a) } 91 \%_{0}-38.22 \%_{5}=52,78 \%
$$

EXAMPLE 4 Making predictions that involve dependent events
Hillary is the coach of a junior ultimate team. Based on the team's record, it has a 60% chance of winning on calm days and a 70% chance of winning on windy days. Tomorrow, there is a 40% chance of high winds. There are no ties in ultimate. What is the probability that Hillary's team will win tomorrow?

$$
\begin{aligned}
& P(\text { win })=P(\text { win } \mid \text { windy })+P(\text { win } \mid \text { coli }) \\
&=.28+0.36 \\
&=0.64 \Rightarrow \text { they have a } 64 \%_{0} \\
& \text { Chanel of wining }
\end{aligned} \begin{aligned}
& P(\text { lose })=0.12+0.24\} \\
&=36 \%_{0}^{P(w i n)+P(10 \text { se })} \\
&=64 \%+36 \% \\
&=100 \% \text { ho ties }
\end{aligned}
$$

In Summary

Key Ideas

- If the probability of one event depends on the probability of another event, then these events are called dependent events. For example, drawing a heart from a standard deck of 52 playing cards and then drawing another heart from the same deck without replacing the first card are dependent events.
- If event B depends on event A occurring, then the conditional probability that event B will occur, given that event A has occurred, can be represented as follows:

$$
P(B \mid A)=\frac{P(A \cap B)}{P(A)}
$$

Need to Know

- If event B depends on event A occurring, then the probability that both events will occur can be represented as follows:

$$
P(A \cap B)=P(A) \cdot P(B \mid A)
$$

- A tree diagram is often useful for modelling problems that involve dependent events.
- Drawing an item and then drawing another item, without replacing the first item, results in a pair of dependent events.

