5.7 Interpreting Graphs of Linear Functions

Make Connections: pg. 311

* A straight line that is not vertical always represents a

* You can always use the ______ to describe the graph of a linear function.

This graph shows the fuel consumption of a scooter with a full tank of gas at the beginning of a journey.

Volume of Gas in a Scooter															
		0	V												
		0													
		0													
-	2	0	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $												
	5	6.		\geq											
		v			$\mathbf{\Sigma}$	V	= f	(d)							
1	5	4.				\geq									
_	<u> </u>	-					$\mathbf{\Sigma}$								
		2-						\mathbf{N}							
		-							\mathbf{X}						
										\mathbf{A}					d
		0				10	00			20	0			30	00
\vdash							Dis	tai	nce	(k	m)				

- a) Write the coordinates of the points where the graph intersects the axes. Determine the vertical and horizontal intercepts. Describe what the points of intersection represent.
- b) What are the domain and range of this function?
- c) Find the slope of the graph

* If you have the equation of a function, you can make a graph by finding only

the _____and then connecting the points.

- > To find the x-intercept, replace y = 0 and solve for x
- > To find the y-intercept, replace x = 0 and solve for y

ex. Sketch the graph of the f(x) = 2x - 3 and find the rate of change (slope).

* If m > 0, the function is increasing

* If m < 0, the function is decreasing

Homefun: Pg. 319 # 4-6, 8-10, 12-16, 19