Make Connections: pg. 311

5.7 Interpreting Graphs of Linear Functions

Make Connections: pg. 311

* A straight line that is not vertical always represents a linear function
* You can always use the x and y intercepts to describe the graph of a linear function.

This graph shows the fuel consumption of a scooter with a full tank of gas at the beginning of a journey.

a) $(200,0) \Rightarrow x$-int $(0,8) \Rightarrow y$
 drotance travelled on
a tank of fuel
b) $D=\{d \in \mathbb{R} \mid 0 \leqslant d \leqslant 200\}$
$R=\{v \in \mathbb{R} \mid 0 \leqslant v \leqslant 8\}$
a) Write the coordinates of the points where the graph intersects the axes. Determine the vertical and horizontal intercepts. Describe what the points of intersection represent.

$$
\text { c) } m=\frac{\Delta y}{\Delta x}
$$

b) What are the domain and range of this function?

$$
\begin{aligned}
& =\frac{-8 \mathrm{~L}}{200 \mathrm{~km}} \\
& =-0.04 \mathrm{~L} / \mathrm{km}
\end{aligned}
$$

* If you have the equation of a function, you can make a graph by finding only the intercepts and then connecting the points.
$>$ To find the x-intercept, replace $y=0$ and solve for x
$>$ To find the y-intercept, replace $x=0$ and solve for y
ex. Sketch the graph of the $f(x)=2 x-3$ and find the rate of change (slope).

$$
\begin{aligned}
& \text { x-int. }: y=0 \Rightarrow \begin{array}{l}
+3 \\
0=2 x-3 \\
\frac{3}{2}=\frac{2 x}{2} \Rightarrow x=\frac{3}{2} \\
\text { y-int. }: x=0 \Rightarrow y=2(0)-3 \\
y=-3
\end{array}, l
\end{aligned}
$$

$$
\begin{aligned}
m=\frac{\Delta y}{\Delta x} & =\frac{r i s e}{r w n} \\
= & \frac{3}{3 / 2}
\end{aligned}
$$

* If $m>0$, the function is increasing

$$
m=2
$$

* If $m<0$, the function is decreasing $\}$ from left to right
negative

