Chapter 6: Polynomial Functions

6.0 Getting Started \Rightarrow discuss various models for long term global population
scatter plot: A set of points on a grid, used to visualize a relationship or trend in the data
polynomial function: a function that contains only operations of multiplication or addition with real-number exponents, and two variables
ex. $f(x)=x^{3}-3 x^{2}+$
χ
 natural
Getting Started Pg. 378:

(4)
units
Ticket Price (\$)
(2) x-axis
label
label with
units with units of measure
(5)

$$
y \text {-scale }
$$

Homework: pg. 303 \#1-4 can be
 subdivide t ex./ mass,
tine
quadratic

$$
\begin{aligned}
& y=a(x-h)^{2}+k \text { (vertex) } \rightarrow(h, k) \\
& y=a x^{2}+b x+c \quad \text { (general) }
\end{aligned}
$$

$$
\text { B) } y=2(x-4)^{2}+800
$$

$$
\begin{aligned}
& \text { metical left's use the know point }(0,0) \\
& \text { stretch }
\end{aligned}
$$

$$
\begin{aligned}
& \text { stretch to solve for the "a" value. } \\
& \text { factor }
\end{aligned}
$$

$$
0=a(0-4)^{2}+800
$$

$$
0=16 a+800
$$

$$
\frac{-800}{16}=\frac{16 a}{16} \Rightarrow 2=-50
$$

$$
R(t)=-50(x-4)^{2}+800
$$

* revenue as a function of ticket price

