96.9 Graphs of Polynomial Functions

end behaviour: the shape or direction of a graph as x gets either very large or very small

cubic function: a polynomial of degree 3

\qquad
turning point: point where a function changes from increasing to decreasing (or vice versa)... the maximum number of turning points is always one less than the degree

End Behaviour is similar for...

*with qu leading coefficient

Need to Know

- The graphs of polynomial functions of the same degree have common characteristics.
- The chart below shows sample sketches of functions and displays all the possibilities for the x-intercepts, y-intercepts, end behaviour, range, and number of turning points for each type of function.

Type of Function	constant	linear	quadratic	cubic
Degree, \boldsymbol{n}	0	1	2	3
Sketch				
Number of x-Intercepts	0 , except for $y=0$, for which every point is on the x-axis	1	0,1 or 2	1,2 or 3
Number of \boldsymbol{y}-Intercepts	1	1	1	1
End Behaviour	Line extends from quadrant II to quadrant I or from quadrant III to quadrant IV.	Line extends from quadrant III to quadrant I or from quadrant II to quadrant IV.	Curve extends from quadrant II to quadrant I or from quadrant III to quadrant IV.	Curve extends from quadrant III to quadrant I or from quadrant II to quadrant IV.
Domain	$\{x \mid x \in R\}$	$\{x \mid x \in \mathrm{R}\}$	$\{x \mid x \in R\}$	$\{x \mid x \in R\}$
Range	$\begin{aligned} & \{y \mid y=\text { constant }, \\ & y \in R\} \end{aligned}$	$\{y \mid y \in R\}$	$\begin{aligned} & \{y \mid y \leq \text { maximum, } \\ & y \in R\} \text { or }\{y \mid y \geq \\ & \text { minimum, } y \in R\} \end{aligned}$	$\{y \mid y \in R\}$
Number of Turning Points	0	0	1	0 or 2

Homefun: pg. 383 \#1-4

