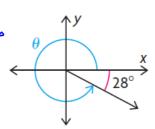
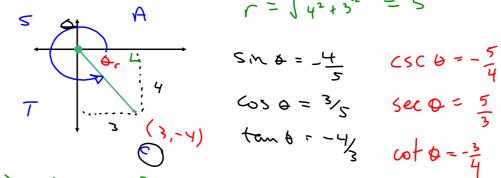
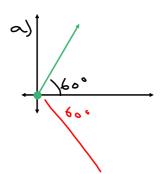

page 314... hmmmm... isn't that 100 times pi?

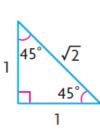

#1, 2, 3 and 4 use R-10 for review

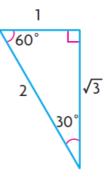
#5 use R - 11 for review

#6 and 7 use R-12 for review

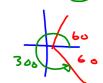

- **1.** For angle θ , determine
 - a) the size of the related acute angle = 28°
 - b) the size of the principal angle




- **2.** Point P(3, -4) lies on the terminal arm of an angle in standard position.
 - a) Sketch the angle, and determine the values of the primary and reciprocal ratios.
 - b) Determine the measure of the principal angle, to the nearest degree.

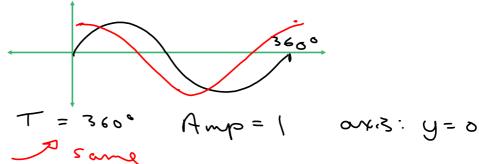


- 3. Draw each angle in standard position. Then, using the special triangles as required, determine the exact value of the trigonometric ratio. a) $\sin 60^{\circ} = \frac{\sqrt{3}}{2}$ c) $\sin 120^{\circ} = \frac{\sqrt{3}}{2}$ e) $\sec 135^{\circ}$ b) $\tan 180^{\circ} = 0$ d) $\cos 300^{\circ}$ \bigcirc f) $\csc 270^{\circ}$



$$(05 135^{\circ} = \frac{1}{\sqrt{2}}$$
 $(.5 \text{ or } 135^{\circ} = -\sqrt{2}$

(05 135° f) (SC 270° = 1/5/1/270° . (SC 270° = -1


- **4.** Determine the value(s) of θ , if $0^{\circ} \le \theta \le 360^{\circ}$.

- a) $\cos \theta = \frac{1}{2}$ c) $\tan \theta = 1$ e) $\cot \theta = -1$ b) $\tan \theta = \frac{1}{\sqrt{3}}$ d) $\cos \theta = -1$ f) $\sin \theta = 1$ $\theta = 180^\circ$ $\theta = 90^\circ$

- D = 60,300.
- **5.** For each of the following, state the **period**, **amplitude**, **equation of** the axis, and range of the function. Then sketch its graph.
 - a) $y = \sin \theta$, where $-360^{\circ} \le \theta \le 360^{\circ}$.
 - b) $y = \cos \theta$, where $-360^{\circ} \le \theta \le 360^{\circ}$.

6. State the period, equation of the axis, horizontal shift, and amplitude of each function. Then sketch one cycle.

a) $y = 2 \sin (3(x + 45^{\circ}))$ b) $y = -\sin (\frac{1}{2}(x - 60^{\circ})) - 1$ $x - \cos x = 4 \cos x$

7. Identify the transformation that is associated with each of the parameters (a, k, d, and c) in the graphs defined by y = a sin (k(x - d)) + c and y = a cos (k(x - d)) + c. Discuss which graphical feature (period, amplitude, equation of the axis, or horizontal shift) is associated with each parameter.

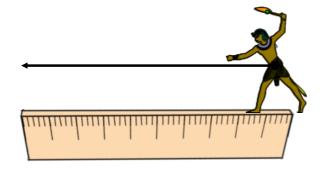
a = vertical stretch aka amplitude

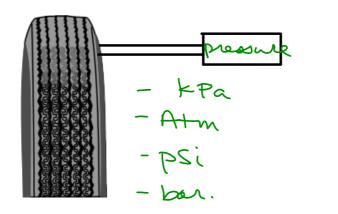
k = horizontal stretch (factor of 1/k)

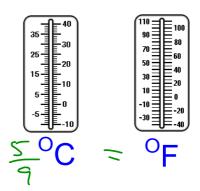
Les related to the period (†)

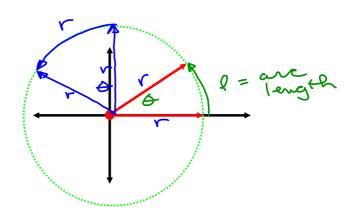
T = 360°

d = horizontal translation


aka phase shift


C = vert. translation


aka vert. dis placement



6.1 Radian Measure

The origin: relation blus

radius : arc length

The arc length can be calculated by:

l= circumference x brachen

of circumference

= 2TT x x D

360°

What happens when l = r?

are length = radius

this angle is known as 1 radian

 $l = \pi r \phi$ $l = r \phi$ radians radians radians

Relationship between radians and degrees...

To convert from degrees to radians...
$$\times$$
 $\frac{180^{\circ}}{180^{\circ}}$

Examples:

Convert to radians:
$$\triangle$$
) \Rightarrow 5 $\times \frac{\pi}{12/800} = \frac{5\pi}{12}$

Convert to degrees:

a)
$$\frac{\pi}{5} \cdot \frac{180^{\circ}}{\pi} = 36^{\circ}$$

but wait...
$$T = 180^{\circ}$$
 So replace

A little trick... T with 180°

b) $\frac{3\pi}{4} = \frac{3(180)}{4} = (35^{\circ})$

$$\frac{3\pi}{4} = \frac{3(186)}{4} = (35)^{6}$$

Arc Length, Angular Speed and Linear Speed

arc length - how long is the length (the pie crust)

- this is a curved distance

angular speed - how fast something is turning

linear speed - how fast something is moving

Example: A merry go round makes 8 revolutions per minute.

(a) what is the angular speed?

(b) how fast is a horse 12 feet from the center?

$$V = V W$$

$$= (12^{1})(16 \pi / m M)$$

(c) how fast is a horse 4 feet from the center?

$$V = \Gamma N$$

$$= (4')(16\pi / min)$$

$$= 64\pi ft/min$$

$$\approx 3.35 ft/e$$

page 320 #1, 3, 4, 7ace, 8ace, 9, 11, 13