
28.

6.2 Perpendiclar and Parallel Lines

* Parallel lines have the same slope
ex. Determine which line segments are parallel
- EF passes through $E(-4,-3)$ and $F(0,3)$
- PQ passes through $\mathrm{P}(-3,-5)$ and $\mathrm{Q}(2,3)$
- RS passes through $R(0,-3)$ and $S(4,3)$

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

$m_{\mathrm{EF}}=\frac{3-(-3)}{\partial-(-4)}$
$m_{P Q}=\frac{3-(-5)}{2-(-3)}$
$m_{R S}=\frac{3-(-3)}{4-0}$
$=\frac{6}{4}$
$=\frac{8}{5}$
$=\frac{6}{4}$
$=\frac{3}{2}$

$$
=\frac{3}{2}
$$

$\therefore \overline{E F}$ and $\overline{R S}$ are parallel
*What is the relationship between two perpendicular lines? Draw two sets of perpendicular lines... what do you notice? \qquad meet @90. ex.

$$
m_{C D}=-\frac{3}{2}
$$

* Perpendicular lines have slopes that are negative reciprocals ex. $m=-3$
ex//
$m=\frac{1}{5}$
ex /l
$m=\frac{-3}{7}$
$m_{\perp}=\frac{1}{3}$

ex. Determine the slope of a line that is perpendicular to a line that passes through $A(-2,3)$ and $B(1,-2)$, the equation for slope is

$$
\begin{aligned}
m_{A B} & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& =\frac{-2-3}{1-(-2)} \\
& =\frac{-5}{3}
\end{aligned}
$$

$\therefore \underbrace{\therefore \quad \frac{3}{5}}_{\text {means }}$
perpendírilas
ex. Is ABCD a parallelogram? Justify your answer.

$$
\begin{aligned}
& \begin{array}{ll}
m_{A B}=\frac{2}{8}=\left(\frac{1}{4}\right. & 0 m_{A B} \| m_{D C} \\
m_{D C}=\frac{2}{8}= & \\
\frac{1}{4} & \begin{array}{l}
\text { means parallel }
\end{array}
\end{array} \\
& \begin{array}{l}
m_{A D}=\frac{-4}{1}=-4 \\
m_{B C}=\frac{-4}{1}=-4
\end{array} \quad \therefore m_{A D} \| m_{B C} \\
& \therefore A B C D \text { is a llogram }
\end{aligned}
$$

