6.4 Curves of Best Fit

<u>curve of best fit</u>: a <u>curved</u> line that best approximates the <u>trend</u> in a scatter plot

EXAMPLE 1 Using technology to solve a quadratic problem

Audrey is interested in how speed plays a role in car accidents. She knows that there is a relationship between the speed of a car and the distance needed to stop. She has found the following experimental data on a reputable website, and she would like to write a summary for the graduation class website.

X	M		· ·			
Speed (km/h)	Distance (m)	Speed (km/h)	Distance (m)	Speed (km/h)	Distance (m)	
90	94.4	38	21	83	130.4	ma
36	17	92	111	50	29.1	, , , ,
65	49.2	m 22	5.6	48	37	
56	50.3	31	16.8	45	20.7	
65	43.1	50	40	81	86	
24	10.9	52	51.2	42	20.6	
35	14.2	33	15.9	31	14	
55	57.3	27	7.4	38	21	
81	76.5	33	20.7	29	11	
83	100.3	32	17.9	77	112.3	
25	9.1	47	41.9	76	84.1	
25	10 ,	M 95	105.2	55	35.3	
77	77.8	24	6.7	79	81.8	
32	14.9	23	6.9	23	6.2	
76	67.3	79	63.6	49	35	

- a) Plot the data on a scatter plot. Determine the equation of a quadratic regression function that models the data. y = 0.00828 x² + 0.53987 x
 b) Use your equation to compare the stopping distance at 30 km/h with -10.44948
- b) Use your equation to compare the stopping distance at 30 km/h with -10.44948 the stopping distance at 50 km/h, to the nearest tenth of a metre.
- c) Determine the maximum speed that a car should be travelling in order to stop within 4 m, the average length of a car.

EXAMPLE 2 Solving a problem with a cubic regression function

The following table shows the average retail price of gasoline, per litre, for a selection of years in a 30-year period beginning in 1979.

l						
Years after 1979	Price of Gas (¢/L)	Years after 1979	Price of Gas (¢/L)			
(min(0)	(21.98) Y	in 17	58.52			
)C)	26.18	20	59.43			
2	35.63	22	70.56			
3	43.26	23	70.00			
4	45.92	24	74.48			
7	45.78	25	82.32			
8	47.95	26	92.82			
9	47.53	27	97.86			
12	57.05	28	102.27			
14	54.18	(29)	(15.29) 41			

a) Use technology to graph the data as a scatter plot. What polynomial function could be used to model the data? Explain.

100KS cubic ... 100KS like 2 turning pants y = 0.01228x3-0.46451x3+6.29563x+23.45162

X hran

Statistics Canada

- b) Determine the cubic regression equation that models the data. Use your equation to estimate the average price of gas in 1984 and 1985. 1984 1979
- c) Estimate the year in which the average price of gas was 56.0¢/L.

The actual average prices of gas in 1984, 1989, and 1995 were 69.4¢/L, 72.1¢/L, and 80.1¢/L, respectively. Add these data points to the table, and use interpolation to determine a new average price of gas in 1985.

1985: x=6 4/1 y=47.15

Homefun: Pg. 419 # 2, 3, 4, 7, 8, 10