6.4 Curves of Best Fit

curve of best fit: a curved line that best approximates the trend in a scatter plot

EXAMPLE 1 Using technology to solve a quadratic problem

Audrey is interested in how speed plays a role in car accidents. She knows that there is a relationship between the speed of a car and the distance needed to stop. She has found the following experimental data on a reputable website, and she would like to write a summary for the graduation class website.

$\boldsymbol{\chi}$
Speed $(\mathbf{k m} / \mathbf{h})$ Distance (\mathbf{m}) Speed $(\mathbf{k m} / \mathbf{h})$ Distance (\mathbf{m}) Speed $(\mathbf{k m} / \mathbf{h})$ Distance (\mathbf{m}) 90 94.4 38 21 83 130.4 36 17 92 111 50 29.1 65 49.2 5 48 37 56 50.3 32 5.6 16.8 45 65 43.1 50 40 81 86 24 10.9 52 51.2 42 20.6 35 14.2 33 15.9 31 14 55 57.3 27 7.4 38 21 81 76.5 33 20.7 29 11 83 100.3 32 17.9 77 112.3 25 9.1 747 41.9 76 84.1 25 10 95 105.2 55 35.3 77 77.8 24 6.7 79 81.8 32 14.9 23 6.9 23 6.2 76 67.3 79 63.6 49 35

a) Plot the data on a scatter plot. Determine the equation of a quadratic regression function that models the data.

```
y=0.00828\mp@subsup{x}{}{2}+0.53987x
```

b) Use your equation to compare the stopping distance at $30 \mathrm{~km} / \mathrm{h}$ with -10.44948 the stopping distance at $50 \mathrm{~km} / \mathrm{h}$, to the nearest tenth of a metre. $\longrightarrow d=13.2 \mathrm{~m}$
c) Determine the maximum speed that a car should be travelling in order to stop within 4 m , the average length of a car.

$$
d=37.24
$$

$$
y=4 m
$$

$$
x=20.4 \mathrm{~km} / \mathrm{h}
$$

let's say me need to Stop within 80 mm to aroid a moose

$$
\rightarrow y_{2}=50 \Rightarrow x=58.9 \mathrm{~km} / \mathrm{hr}
$$

EXAMPLE 2 Solving a problem with a cubic regression function
The following table shows the average retail price of gasoline, per litre, for a selection of years in a 30-year period beginning in 1979.

a) Use technology to graph the data as a scatter plot. What polynomial function could be used to model the data? Explain.
looks cubic... looks like 2 turning porto

$$
y=0.01228 x^{3}-0.46451 x^{2}+6.29503 x+23.45162
$$

b) Determine the cubic regression equation that models the data. Use your equation to estimate the average price of gas in 1984 and 1985 . 1984-1979
c) Estimate the year in which the average price of gas was $56.0 \mathrm{f} / \mathrm{L}$.

$$
\begin{aligned}
& y_{2}=56.0 \rightarrow \text { find point of } \Rightarrow x=5 \\
& 2^{\text {nd }} \text { sac } \rightarrow \rightarrow \text { inspection (POI) } \rightarrow \text { enter } 3 x \\
& x=16.5+1979=1995.5 \\
& \text { The actual average prices of gas in 1984, 1989, and } 1995 \text { were } 69.4 \mathrm{4} / \mathrm{L} \text {, } \\
& 72.1 \mathrm{C} / \mathrm{L} \text {, and } 80.1 \mathrm{~d} / \mathrm{L} \text {, respectively. Add these data points to the table, and } \\
& \text { use interpolation to determine a new average price of gas in } 1985 . \\
& \text { 1985: } \\
& x=6 \quad 4 / 2 \\
& y=47.15
\end{aligned}
$$

Your Turn

Homefun: Pg. 419 \# 2, 3, 4, 7, 8, 10

