$$
\begin{aligned}
10 \text { d) } \begin{aligned}
\frac{\frac{1}{x+4}+\frac{1}{x-4}}{\frac{x}{x^{2}-16}+\frac{1}{x+4}} & =\frac{\frac{1}{x+4}\left(\frac{(x-4)}{(x-4)}+\frac{1(x+4)}{(x-4)(x+4)}\right.}{\frac{1(x-4)}{(x-4)}+\frac{1(x-4)}{(x+4)(x-4)}} \\
=\frac{\frac{(x-4)+(x+4)}{(x+4)(x-4)}}{\frac{x+(x-4)}{(x+4))(x-4)}}=\frac{2 x}{2 x-4} & =\frac{2 x}{2(x-2)} \\
& =\frac{x}{x-2}
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& \text { be, } 10 a, 11 a, 12 \\
& \text { be) } \frac{2 h}{h^{2}-9}+\frac{h}{h^{2}+6 h+9}-\frac{3}{h-3} \\
& \begin{array}{l}
h^{2}-9 h^{2}+6 h+9 \\
=\frac{2 h \cdot(h+3)}{(h+3)(h-3)(h+3)}+\frac{h(h-3)}{(h+3)(h+3)(h-3)}-\frac{3(h+3)^{2}}{h-3(h+3)^{2}}
\end{array} \\
& =\frac{2 h(h+3)+h(h-3)-3\left(h^{2}+6 h+a\right)}{(h+3)^{2}(h-3)} \\
& =\frac{2 \hbar^{2}+6 \hbar+h^{2}-3 \hbar-3 \hbar^{2}-18 \hbar-27}{(h+3)^{2}(h-3)} \\
& =\frac{-15 h-27}{(h+3)^{2}(h-3)}=\frac{-3(5 h+9)}{(h+3)^{2}(h-3)} \\
& \text { 10a) } \frac{\frac{2 x}{x}-\frac{6}{x}}{\frac{p^{2}}{1 x^{2}}-\frac{9}{x^{2}}} \\
& =\frac{2 x-6}{x} \div \frac{x^{2}-9}{x^{2}} \\
& x \neq 0 \\
& 1-\frac{9}{x^{2}} \neq 0 \\
& 1 \neq \frac{a}{x^{2}} \\
& =\frac{2(x-3)}{x} \cdot \frac{x^{2}}{(x+3)(x-6)}=\frac{2 x}{x+3} \quad \sqrt{x^{2}}+\frac{1+9}{9} \\
& x \neq \pm 3 \\
& \text { la) } \frac{\frac{A D}{B}+\frac{C \cdot B}{B}}{D}=\frac{A}{B}+\frac{C}{D} \\
& L S=\frac{\frac{A D+C B}{B}}{\frac{D}{1}}=\frac{A D+C B}{B} \cdot \frac{1}{D}=\frac{A D+C B}{B D}=\frac{A D}{B D}+\frac{C B}{B D} \\
& \text { 12. } \frac{x}{\frac{x-1}{4}} \\
& h^{2}=a^{2}+b^{2} \\
& h=\sqrt{\left(\frac{x}{2}\right)^{2}+\left(\frac{x-1}{4}\right)^{2}} \\
& =\sqrt{\frac{4 x^{2}}{4-4}+\frac{(x-1)^{2}}{16}} \\
& =\frac{\sqrt{4 x^{2}+x^{2}-2 x+1}}{\sqrt{16}}=\frac{\sqrt{5 x^{2}-2 x+1}}{4}
\end{aligned}
$$

6.4 Rational Equations

* When solving a rational equation, it is often easiest if all expressions have the same denominator
ex. $\frac{2}{x^{2}-4}+\frac{10}{6 x+12}=\frac{1}{x-2}$
* restrictions

$$
\frac{2}{(x+2)(x-2)}+\frac{10}{6(x+2)}=\frac{1}{x-2}
$$

$$
x \neq \pm 2
$$

* when we multiply
$\frac{2 \cdot 6}{6(x+2)(x-2)}+\frac{10(x-2)}{6(x+2)(x-2)}=\frac{1 \cdot 6(x+2)}{6(x-2)(x+2)}$ through by the Cancels ont D

$$
\begin{aligned}
& {\left[\frac{12}{6(x+2)(-2)}+\frac{10 x-20}{6(x+2)(x-2)}=\frac{6 x+12}{6(x-2)(x+2)}\right] \cdot 6(x-2)(x+2)} \\
& \text { everywhere } \\
& 10 x-8=6 x+12 \\
& \{x \in \mathbb{R} \mid x \neq \pm 2\} \\
& \frac{4 x}{4}=\frac{20}{4}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{4 x}{4}=\frac{20}{4} \\
& x=5
\end{aligned}
$$

Your turn pg. 343

$$
\begin{gathered}
\frac{9}{y-3}-\frac{4}{y-6}=\frac{18}{y^{2}-9 y+18} \\
\frac{9(y-6)}{(y-3)(y-6)}-4(y-3)=\frac{18}{(y-6)(y-3)(y-6)} \\
9(y-6)-4(y-3)=18 \\
9 y-54-4 y+12=18 \\
5 y=18-12+54 \\
5 y=\frac{60}{5} \Rightarrow y=12
\end{gathered}
$$

$$
\begin{aligned}
& \text { ex. } \frac{4 x-1}{x+2}-\frac{x+1}{x-2}=\frac{x^{2}-4 x+24}{x^{2}-4} \\
& \text { * restrictions } x \neq \pm 2 \\
& {\left[\frac{(4 x-1) \cdot(x-2)}{(x+2)(x-2)}-\frac{(x+1)(x+2)}{(x-2)(x+2)}=\frac{x^{2}-4 x+24}{(x+2)(x-2)}\right](x+2)(x-2)} \\
& \begin{array}{l}
=-\quad=24 \\
-+=-1
\end{array} \text { not } \begin{array}{l}
\text { noctorable }
\end{array} \\
& \text { * domain } \\
& \{x \in \mathbb{R} \mid x+ \pm 2\} \\
& 4 x^{2}-8 x-x+2-\left(x^{2}+3 x+2\right)=x^{2}-4 x+24 \\
& 3 x^{2}-12 x=x^{2}-4 x+24 \\
& \left(2 x^{2}-8 x-24=0\right) \div 2 \\
& x^{2}-4 x-12=0 \\
& (x-6)(x+2)=0 \\
& \text { Your turn pg. } 344 \\
& \frac{3 x \cdot(x-3)}{(x+2)(x-3)}-\frac{5(x+2)}{(x-3)(x+2)}=\frac{-25}{(x-3)(x+2)} \\
& 3 x^{2}-9 x-(5 x+10)=-25 \\
& 3 x^{2}-9 x-5 x-10=-25 \\
& \begin{array}{l}
3 x^{2}-14 x+15=0 \quad \frac{-9}{-9} \cdot-5=45 \\
\left(3 x^{2}-9 x\right)+(-5 x+15)=0 \quad-\frac{-5}{}=-14
\end{array} \\
& 3 x(x-3)+-5(x-3)=0 \\
& (3 x-5)(x-3)=0 \\
& \begin{array}{l}
\text { Homefun: pg. 348\#(2,3)ac, 5, 8, 12-14, 17, 20, 21, 26, } t_{\text {there }}=\frac{70}{v}, t_{\text {back }}=\frac{70}{v-6} \\
3 x-S=0 \quad x-3=0
\end{array} \\
& \begin{array}{lll}
3 x-5=0 & x-3=0 & \text { but } x \neq 3,-2
\end{array} \\
& \begin{array}{ll}
3 x=5 \\
x=5 & x-3
\end{array} \\
& \text { - The average } \\
& \text { speed on the e } \\
& \text { way there is } \\
& \begin{array}{l}
\frac{70}{v}+\frac{70}{v-6}=8.5 \\
\frac{70(v-6)}{v(v-6)}+\frac{70 v}{(v-6) V}=\frac{8.5 v(v-6)}{v(v-6)} \\
70 v-420+70 v=8.5 v^{2}-5 v v \\
0=8.5 v^{2}-191 v+420 \\
\text { ie Quadratic Formula } \\
\text { vest } v=20 \text { or } v=\frac{42}{17}=2.5
\end{array} \\
& \begin{array}{l}
\frac{70}{v}+\frac{70}{v-6}=8.5 \\
\frac{70(v-6)}{v(v-6)}+\frac{70 v}{(v-6) V}=\frac{8.5 v(v-6)}{v(v-6)} \\
70 v-420+70 v=8.5 v^{2}-5 v v \\
0=8.5 v^{2}-191 v+420 \\
\text { Qt Quadratic Formula } \\
\text { vest } v=20 \text { or } v=\frac{42}{17}=2.5
\end{array} \\
& \begin{array}{l}
\frac{70}{v}+\frac{70}{v-6}=8.5 \\
\frac{70(v-6)}{v(v-6)}+\frac{70 v}{(v-6) V}=\frac{8.5 v(v-6)}{v(v-6)} \\
70 v-420+70 v=8.5 v^{2}-5 v v \\
0=8.5 v^{2}-191 v+420 \\
\text { Qt Quadratic Formula } \\
\text { vas } v=20 \text { or } v=\frac{42}{17}=2.5
\end{array} \\
& t_{\text {there }}+t_{\text {back }}=8.5 \\
& \text { but } t=\frac{d}{v} \\
& \text { time on the way bact, speed } \\
& \text { is } v-6 \text {, the rower } v=2.5 \\
& \text { wakes no renal... }
\end{aligned}
$$

