6.5 Point-Slope Form

Find the equation of the line that passes through (2,1) with $m=\frac{4}{3}=\frac{\Delta y}{\Delta x}$
or use Point-Slope Form

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

where $\left(x_{1}, y_{1}\right)$ is s point on the any

$$
\therefore y-1=\frac{4}{3}(x-2)
$$

$$
y=m x+b
$$

Ex. Identify the slope and a point on the following line: $y+3=-\frac{3}{5}(x-2)$

$$
\left.m=-\frac{3}{5} \quad \begin{array}{l}
x_{1}=2 \\
y_{1}=-3
\end{array}\right\} \begin{gathered}
(2,-3)
\end{gathered}
$$

$$
(y-(-3))
$$

Note: the signs are always opposite

Ex. Write the equation of this line in point-slope form and in slope-intercept form.

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-(-2)=\frac{3}{4}(x-(-1))=
\end{aligned}
$$

or $y-1=\frac{3}{4}(x-3)$
$y=m x+b$... use $m=\frac{3}{4}$ and $(3,1)$ to get b value \rightarrow So sub in $(3,1)$ for x and y and solve forb.

$$
\begin{gathered}
y=m x+b \\
1=3 / 4(3)+b \\
1=\frac{9}{4}+b \\
1-\frac{9}{4}=b \\
\frac{4}{4}-\frac{9}{4}=b \\
b=-\frac{5}{4}
\end{gathered}
$$

Ex. Write the equation of the line (in point-slope form and in slope-intercept form) that passes through ($2,-3$) and
a) is parallel to $y=\frac{2}{3} x+7$

$$
y=m x+b
$$

use $m=\frac{2}{3}$ and $(2,-3)$

$$
\begin{gathered}
y-y_{1}=m\left(x-x_{1}\right) \\
\left(x, y_{1}\right)=(2,-3) \\
y-(-3)=\frac{2}{3}(x-2) \\
y+3=\frac{2}{3}(x-2)
\end{gathered}
$$

$$
\begin{aligned}
& -3=\frac{2}{3}(2)+b \\
& -3=\frac{4}{3}+b \\
& -\frac{3}{1 \times 3}-\frac{4}{3}=b \\
& -\frac{9}{3}-\frac{4}{3}=b \\
& b=\frac{-13}{3}
\end{aligned} \quad y=\frac{2}{3} x-\frac{13}{3}
$$

b) is perpendicular to $y=\frac{2}{3} x+7 \Rightarrow m_{\perp}=-\frac{3}{2}$

$$
\begin{array}{rl}
y+3=-\frac{3}{2}(x-2) \quad \text { use }(2,-3) & \text { and } m=-\frac{3}{2} \text { in } \\
y & =m x+b \\
-3 & =-\frac{3}{2}(2)+b \\
-3 & =-3+b \\
+3 \\
0 & =b \\
0 & y=m x+b \text { bewmeo } \\
\therefore y & =-\frac{3}{2} x
\end{array}
$$

Homefun: pg. 372 \#(4-6)ab, 9-13, 15-17, 19, 20, 24

