12,19

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

$\Rightarrow(x, y)$ a pent
\#12, a) $y+3=2(x-1)$
pt. $(1,-3)$
Lsgraph C
Quiz tomorrow 6.3-6.5)
19. $G(-3,11)$ and $H(4,-3)$

$$
\begin{aligned}
m & =\frac{-3-11}{4-(-3)}=\frac{-14}{7}=-2 \\
y-y_{1} & =m\left(x-x_{1}\right) \\
y-11 & =-2(x+3) \quad y+3=-2(x-4)
\end{aligned}
$$

d) write as $y=m x+$ (b) do they have the samp

$$
\begin{aligned}
& y-11=-2 x-6 \\
& y=-2 x+5
\end{aligned} \operatorname{sen}_{\substack{ \\
y}}^{y+3=-2 x+8}+\begin{aligned}
& y-1 \\
& y=-2 x+5
\end{aligned}
$$

$$
y \text {-int? }
$$

20. D $(-5,-3)$
i) $m=-\frac{4}{3} \Rightarrow y+3=-\frac{4}{3}(x+5)$
(i) $m \perp=\frac{3}{4} \Rightarrow y+3=\frac{3}{4}(x+5)$

6.6 General Form

* The general form of a linear relation is an equation where all the terms are on the left side of the equal sign and all the coefficients as well as the constant term are whole numbers.

$$
0=A x+B y+C=0
$$

ex. Write in general form
a) $y=-3 x+5$
b) $y=-\frac{1}{2} x+3$
c) $y+2=\frac{3}{2}(x-4)$

$$
y+2=\frac{3}{2} x-\frac{12}{2}
$$

$$
y+2=\frac{3}{2} x^{-}-6
$$

$$
\left(0=\frac{3}{2} x-y-0\right)^{x}
$$

$$
0=3 x-2 y-16
$$

Ex. Find the intercepts and graph: $4 x+y-8=0$ plot the intercepts

$$
\begin{gathered}
x \text {-int: } y=0 \\
4 x+0-8=0 \\
\frac{4 x=\frac{8}{4}}{x=2} \int(2,0) \\
y \text {-int: } x=0 \\
4(0)+y-8=0 \\
y=8 \rightarrow(0,8)
\end{gathered}
$$

$$
\begin{aligned}
& \begin{array}{c}
3 x+y-5=0 \\
\text { or }
\end{array} \\
& \left(\frac{1}{2} x^{0}+y^{2}=0\right)^{x}
\end{aligned}
$$

Ex. Find the slope of $4 x-3 y-12=0$ put into $y=m x+b$

$$
\begin{gathered}
\frac{-3 y}{-3}=\frac{-4 x}{-3}+\frac{12}{-3} \\
y=\frac{4}{3} x-4
\end{gathered}
$$

ex. Peanuts cost $\$ 2$ per 100 g and raisins cost $\$ 1$ per 100 g . Dave has $\$ 10$ to purchase some of both. Represent this situation with an equation in general form graph it.
let $x=$ mass of peanuts

$$
y=\text { mass of raisins }
$$

X-int: Spend $10^{\$}$ orly on muts

$$
\begin{aligned}
& \text { for } \$ 18 \text { I can get } \\
& \text { t: spend all } 10 \$ \\
& \text { I cam get } 1000 \mathrm{~g}
\end{aligned}
$$

y.nt: spend all 10^{ϕ} on raisins
mass of peanuts

$$
\begin{aligned}
& \therefore m=-\frac{1000}{500}=-2 \\
& \therefore y=m x+b \text { becomes } y=-2 x+1000
\end{aligned}
$$

now move all to ene side
$2 x+y-1000=0$

