7.1 Absolute Value

* The absolute value of a real number is its distance from zero on a number line.
ex.

Consequently:

We can conclude that:

$$
|n|=\left\{\begin{array}{cc}
n & \text { if } n \geqslant 0 \\
-n & \text { if } n<0
\end{array}\right.
$$

* When evaluating an expression with an absolute value, it operates as a bracket. In other words, consider it first in the order or operations.

$$
\begin{aligned}
& \text { ex. } 3-2|-12+8|= \\
& =3-2|-4| \\
& =3-2(4) \\
& =3-8 \\
& =-5
\end{aligned}
$$

$$
\text { ex. }\left|12(-3)+5-3(4+5)^{2}\right|
$$

$$
=\left|12(-3)+5-3(9)^{2}\right|
$$

$$
=|12(-3)+5-3(81)|
$$

$$
=|-36+5-243|
$$

$$
=|-274|=274
$$

Applications: We often use absolute values to calculate distances or total variations in values.
ex. Consider the points $A(-4,3)$ and $B(2,-5)$. What is the horizontal and vertical distance between the points?

$$
\begin{aligned}
& d_{\text {horiz. }}=\left|x_{B}-x_{A}\right|=|2-(-4)|=|6|=6 \\
& d_{\text {vert. }}=\left|y_{B}-y_{A}\right|=|-5-3|>|-8|=8 \\
& m=\left|\frac{\Delta y}{\Delta x}\right| \text { would mean how steep } \\
& \text { regardless of sign. }
\end{aligned}
$$

ex. Consider the points $\mathrm{A}(-4, y)$ and $\mathrm{B}(x,-5)$. What is the horizontal and vertical distance between the points?

$$
\begin{aligned}
d_{\text {horiz. }} & =|x-(-4)| \\
& =|x+4|
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{d}_{\text {vert. }} & =|-5-y| \\
& =|-(5+y)| \\
& =|5+y|
\end{aligned}
$$

ex. A father with 4 kids must drive them to their Saturday activities. The diagram below illustrates the distances and the route followed. How many total kilometers did the father drive?

$$
\begin{aligned}
d_{\text {total }} & =|62-32|+|58-62|+|91-58|+|32-91| \\
& =|30|+|-4|+|33|+|-59| \\
& =30+4+33+59 \\
& =126 \mathrm{~km}
\end{aligned}
$$

