7.2 Absolute Value Functions

* The function $y=|f(x)|$ can be defined as the following piecewise function:

$$
|f(x)|=\left\{\begin{array}{l}
f(x), f(x): 0 \\
-f(x), f(x): 0
\end{array}\right.
$$

only in one way for any condition

Ex. $y=|3 x-5|$ see graph below

$$
\begin{aligned}
& y= \begin{cases}3 x-5, & x \geqslant 5 / 3 \\
-(3 x-5), & x<5 / 3 \\
=-3 x+5\end{cases} \\
& \begin{array}{l}
\text { Ex. } y=\left|x^{2}-2 x-15\right| \\
=x^{2}-2 x-15 \\
=(x-5)(x+3) \\
x=5)(x=-3
\end{array} \quad y=\left\{\begin{array}{l}
x^{2}-2 x-15 \\
\text { for } x \geqslant 5 \\
\text { and } x \leqslant-3 \\
-\left(x^{2}-2 x-15\right) \\
-3<x<5
\end{array}\right.
\end{aligned}
$$

* Graphically, it looks like the graph of an absolute function "bounces" off the x-axis instead of becoming negative.

*As with any function, we can obtain the \mathbf{x}-intercept by replacing \mathbf{y} with 0 and the

$$
\text { ex. } y=|3 x-5|
$$

$$
\begin{aligned}
& x \text {-int: } y=0 \\
& 0=|3 x-5| \\
& 0=3 x-5 \\
& \frac{5}{3}=x
\end{aligned}
$$

y-intercept by replacing x with 0

$$
\begin{aligned}
y-m t: & x=0 \\
y & =|3(0)-5| \\
& =|-5| \\
& =5
\end{aligned}
$$

Ex. $y=\left|x^{2}+x-2\right| \rightarrow \mathbb{R}:\{y \in \mathbb{R} \mid y \geqslant-2.25\}$

* $y=x^{2}+x-2$ is a quadratic function with zeroes at -2 and 1 , a vertex at ($-0.5,-2.25$), and a y -intercept of -2 . $\rightarrow R:\{y \in \mathbb{R} \mid y \geqslant 0\}$
* $y=\left|x^{2}+x-2\right|$ is the same with the exception
 of it's range... and that weird hump thing.
Ex. $y=1-x^{2}-2 x+81$

$$
\begin{aligned}
& \rightarrow \text { Aus is halfway } \\
& \text { (e } x=-1 \\
& \therefore y_{v}=-(-1)^{2}-2(-1)+8 \\
& y_{v}=-1+2+8 \\
& y_{v}=9 \\
& \text { vertex © }(-1,9)
\end{aligned}
$$

considtit the parent

$$
y=-\left(x^{2}+2 x-8\right)
$$

$$
=-(x+4)(x-2)
$$

$$
x=-4 x=2
$$

