15.
$$0Ax + By = C$$

1f $(0,y)$ is a solution of $(x + By) = C$

1f $(x + By) = C$

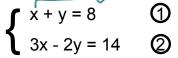
2 D(x) + Ey = E

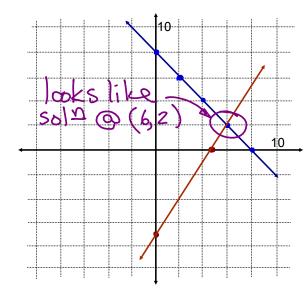
3 Solution of $(x + By) = C$

2 D(x) + Ey = E

3 Solution of $(x + By) = C$

3 Solution of $(x + By) = C$


3 Solution of $(x + By) = C$


4 Solution of $(x + By) = C$

5 D(x) + Ey = E

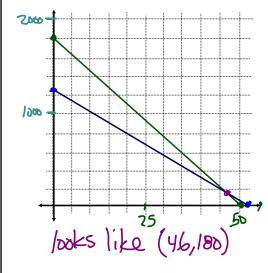
7.2 Solving Systems Graphically

- * The solution of a system of equations is the point of intersection of the two graphs. This coordinate satisfies both equations at the same time.
- ex. Graphically solve the the following system:

$$3 \times -260 = 14$$
 $3 \times -260 = 14$
 $3 \times -14/3$
 $3 \times -14/3$
 $3 \times -14/3$

Test the solution in equation $\textcircled{1} & \textcircled{2} \mid x = 6 \quad \vdots \quad y = 2$

$$0 \times + y = 8$$


$$6 + 2 = 8 \checkmark$$
Satisfies equal 0

$$23x-2y=14$$

 $6+2=84$
 $3(6)-2(2)=14$ sutisfies
 $18-4=14$ 9^{-1} 9^{-1

ex. A box of 36 golf balls has a mass of 1806 g. If we remove 12 balls, the box has a mass of 1254 g. What is the mass of one ball? How much does the empty box weigh?

let x =the mass of one ball

y =the mass of the box

1
$$36 \times + y = 1806$$

 $x-in+: y=0$ $y-int: x=0$
 $36 \times = 1806$ $36 \times + y=1806$
 $x=50.16$ $y=1806$

2
$$24x + y = 1254$$

 $x - int : y = 0$ $y - int : x = 0$
 $24x = 1254$
 $x = 52.25$ $y = 1254$

Test the solution in equation 1&2

test
$$(46, 180)$$

D 36 (46) + 180

= 1836

= 1886 but is

= 1284

A 1806 but is

A 1806 but is

A 1806 but is

... The golf ball weighs about 46 g and the kex weighs around 180g (160 g would be a better estmote)

Homefun: Pg. 409 # 3-9, 11, 12, 15, 19