7.4 Characteristics of Logarithmic Functions with Base 10 and Base e

\boldsymbol{x}	$\boldsymbol{f}(\boldsymbol{x})=\log _{10} \boldsymbol{x}$
-1	undefined
0	undefined
1	0
2	$0.301 \ldots$
3	$0.477 \ldots$
4	$0.602 \ldots$
5	$0.698 \ldots$
6	$0.778 \ldots$
7	$0.845 \ldots$
8	$0.903 \ldots$
9	$0.954 \ldots$
10	1

\boldsymbol{x}	$\boldsymbol{g}(\boldsymbol{x})=\mathbf{2} \log _{10} \boldsymbol{x}$
-1	undefined
0	undefined
1	0
2	$0.602 \ldots$
3	$0.954 \ldots$
4	$1.204 \ldots$
5	$1.397 \ldots$
6	$1.556 \ldots$
7	$1.690 \ldots$
8	$1.806 \ldots$
9	$1.908 \ldots$
10	2

\boldsymbol{x}	$\boldsymbol{h}(\boldsymbol{x})=\mathbf{5} \boldsymbol{\operatorname { l o g }}_{10} \boldsymbol{x}$
-1	undefined
0	undefined
1	0
2	$1.505 \ldots$
3	$2.385 \ldots$
4	$3.010 \ldots$
5	$3.494 \ldots$
6	$3.890 \ldots$
7	$4.225 \ldots$
8	$4.515 \ldots$
9	$4.771 \ldots$
10	5

C. Examine the graph of each function, and state the following characteristics:

- the number of x-intercepts \longrightarrow one
- the y-intercept \rightarrow none (vertical asymptote: $x=0$)
- the end behaviour $\rightarrow Q I D \rightarrow Q I$
- the domain $\{x \in \mathbb{R} \mid x>0\}$
- the range $y \in \mathbb{R}$
G. On a new screen, graph the function $y=\ln x$ and two other functions of the form $y=a \ln x$, where $a>0$. Examine the graph of each function, and state the following characteristics:
- the number of x-intercepts \Rightarrow one
- the y-intercept \rightarrow none
- the end behaviour $\rightarrow Q \mathbb{Q} \rightarrow Q I$
- the domain $\longrightarrow\{x \in \mathbb{R} \mid x>0\}$
- the range $\rightarrow y \in \mathbb{R}$
common
logarithm

 logarithms

x- ais

A logarithmic function is a function of the form $y=a \log _{b} x$ where $b>0$, $b \neq 1$ and $a \neq 0$, and $\mathrm{a} \& \mathrm{~b}$ are real numbers. $x>0$

EXAMPLE 2 Connecting the characteristics of a decreasing natural logarithmic function to its equation and graph

Predict the x-intercept, the number of y-intercepts, the end behaviour, the domain, and the range of the following function:

$$
y=-4 \ln x
$$

Use the equation of the function to make your predictions. Verify your predictions using graphing technology.

$$
\begin{array}{ll}
x \text {-ints }=\text { one } & \text { Range: } y \in \mathbb{R} \\
y \text {-ints }=\text { none } & \text { domaine: }\{x \in \mathbb{R} \mid x>0\} \\
E \cdot B \rightarrow Q I \rightarrow Q I V &
\end{array}
$$

EXAMPLE 3 Matching equations of exponential and logarithmic functions with their graphs

Which function matches each graph below? Provide your reasoning.
i) $y=5(2)^{x}$
ii) $y=2(\underline{0.1})^{x}$
iii) $y=(\log x$
iv) $y=\ominus 2 \ln x$

c)

d)

Read pg. 481 "In Summary"
Homefun: Pg. 461 \# 4-6, 8, 12, 17

In Summary

Key Ideas

- A logarithmic function has the form $f(x)=a \log _{b} x$, where $b>0, b \neq 1$, and $a \neq 0$, and a and b are real numbers.
- All logarithmic functions of the form $f(x)=a \log x$ and $f(x)=a \ln x$ have these characteristics:

\boldsymbol{x}-Intercept	1
Number of \boldsymbol{y}-Intercepts	0
End Behaviour	The curve extends from quadrant IV to quadrant I or quadrant I to quadrant IV.
Domain	$\{x \mid x>0, x \in R\}$
Range	$\{y \mid y \in R\}$

- All logarithmic functions of the form $f(x)=a \log x$ and $f(x)=a \ln x$ have these unique characteristics:
- If $a>0$, the function increases.
- If $a<0$, the function decreases.

Need to Know

- The graph of a logarithmic function of the form
$f(x)=a \log x$ or $f(x)=a \ln x$ will look like one of the following cases:

Case 1: an increasing function, where $a>0$

- The graph of $y=\log x$ is a reflection of the graph of $y=10^{x}$ about the line $y=x$.

Case 2: a decreasing function, where $a<0$

- The graph of $y=\ln x$ is a reflection of the graph of $y=e^{x}$ about the line $y=x$.

