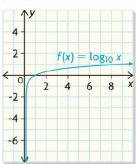
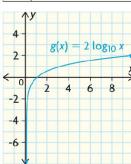
7.4 Characteristics of Logarithmic Functions with Base 10 and Base e

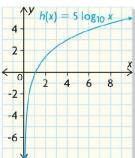
х	$f(x) = \log_{10} x$
-1	undefined
0	undefined
1	0
2	0.301
3	0.477
4	0.602
5	0.698
6	0.778
7	0.845
8	0.903
9	0.954
10	1

х	$g(x) = 2 \log_{10} x$
-1	undefined
0	undefined
1	0
2	0.602
3	0.954
4	1.204
5	1.397
6	1.556
7	1.690
8	1.806
9	1.908
10	2

х	$h(x) = 5 \log_{10} x$
-1	undefined
0	undefined
1	0
2	1.505
3	2.385
4	3.010
5	3.494
6	3.890
7	4.225
8	4.515
9	4.771
10	5







- Examine the graph of each function, and state the following characteristics:
 - the number of x-intercepts \longrightarrow one
 - the y-intercept → none (hertical asymptote: χ=δ)
 the end behaviour → QTV → QT

 - the domain $\{\chi \in \mathbb{R} \mid \chi > \delta \}$
 - the range 46 R
- **G.** On a new screen, graph the function $y = \ln x$ and two other functions of the form $y = a \ln x$, where a > 0. Examine the graph of each function, and state the following characteristics:
 - the number of x-intercepts \longrightarrow onl
 - the y-intercept -> None
 - the end behaviour $\longrightarrow \mathbb{Q} \mathbb{T} \longrightarrow \mathbb{Q} \mathbb{T}$
 - the domain $\longrightarrow \{ \chi_{6} | \chi > 0 \}$
 - the range -> YER

A logarithmic function is a function of the form $y = a \log_b x$ where b > 0, $b \neq 1$ and $a \neq 0$, and a & b are real numbers. $(\times > \bigcirc)$

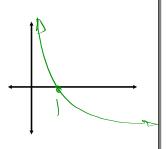
Connecting the characteristics of a decreasing EXAMPLE 2 natural logarithmic function to its equation and graph

Predict the x-intercept, the number of y-intercepts, the end behaviour, the domain, and the range of the following function:

$$y = -4 \ln x$$

Use the equation of the function to make your predictions. Verify your predictions using graphing technology.

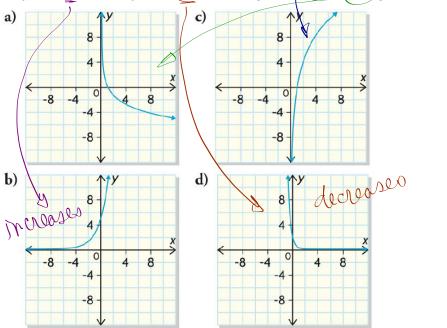
$$\chi$$
-ints = one
 γ -ints = none
 $E.B. \Rightarrow QI \rightarrow QIV$



Matching equations of exponential and logarithmic functions EXAMPLE 3 with their graphs

Which function matches each graph below? Provide your reasoning.

i) $y = 5(2)^x$ ii) $y = 2(0.1)^x$ iii) $y = 6 \log x$ (iv) $y = 2 \ln x$



Read pg. 481 "In Summary" Homefun: Pg. 461 # 4-6, 8, 12, 17

In Summary

Key Ideas

- A logarithmic function has the form $f(x) = a \log_b x$, where b > 0, $b \ne 1$, and $a \ne 0$, and a and b are real numbers.
- All logarithmic functions of the form $f(x) = a \log x$ and $f(x) = a \ln x$ have these characteristics:

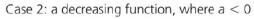
x-Intercept	1
Number of y-Intercepts	0
End Behaviour	The curve extends from quadrant IV to quadrant I or quadrant I to quadrant IV.
Domain	$\{x \mid x > 0, x \in R\}$
Range	$\{y \mid y \in R\}$

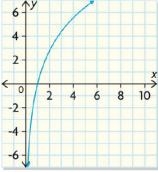
- All logarithmic functions of the form $f(x) = a \log x$ and $f(x) = a \ln x$ have these unique characteristics:
 - If a > 0, the function increases.
 - If a < 0, the function decreases.

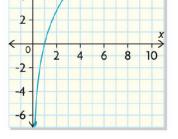
Need to Know

• The graph of a logarithmic function of the form $f(x) = a \log x$ or $f(x) = a \ln x$ will look like one of the following cases:

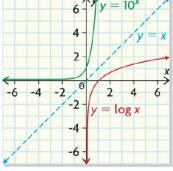
Case 1: an increasing function, where a > 0

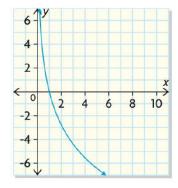






• The graph of $y = \log x$ is a reflection of the graph of $y = 10^x$ about the line y = x.





• The graph of $y = \ln x$ is a reflection of the graph of $y = e^x$ about the line y = x.

