7.4 Reciprocal Functions

* If $y=f(x)$ is a function, then its reciprocal function is defined by $y=\frac{1}{f(x)}$. In this case, the reciprocal function has a restriction on its domain everywhere that $f(x)=$ zero \qquad x-intercepts
* $y=\frac{1}{x}$ is the mother function of all reciprocal functions.
ex. Graph $y=x$ and its reciprocal as well as $y=2 x-2$ and its reciprocal

We call these vertical asymptotes
Do either graphs cross the x-axis? NO
We call these horizontal asymptotes.

$$
y=e^{-x} \sin x
$$ Def n: a vertical asymptote is a line that a function approaches without ever crossing it. A horizontal asymptote is similar but can occasionally be crossed.

* For any reciprocal function, the restrictions on the domain will result in vertical asymptotes (or holes... but we shouldn't see that until PC12).
* To graph an inverse function:

1) graph the base function $y=f(x)$ and determine its zeroes
2) Use a dotted line to show the vertical asymptotes. These will occur wherever $f(x)$ crosses the x-axis.
3) Determine the invariant points. These occur where $f(x)$ crosses the lines $y=1$ and $y=-1$
4) Do not make a table of values! Remember:

- When $f(x)$ gets large, the reciprocal function approaches zero
- When $f(x)$ gets small the reciprocal function approaches infinity
- When $f(x)$ is positive, the reciprocal function is also positive
- When $f(x)$ is negative the reciprocal function is also negative
- Make sure your inverse function never crosses a vertical asymptote
ex. graph $y=\frac{1}{2 x-5}$
graph $y=2 x-5$
draw the invariant lines
© $y= \pm 1 \rightarrow$ place the
invariant points where the parent function crosses $y= \pm 1$
 \rightarrow vertical asymptote where
$2 x-5=0 \Rightarrow x=5 / 2$
$2 x=5$

$$
\begin{aligned}
& \text { find } y \text {-int: } x=0 \\
& y=\frac{1}{2(0)-5}=-\frac{1}{5}
\end{aligned} \Rightarrow(0,-1 / 5)
$$

$$
\begin{aligned}
& \text { ex. graph } y=\frac{1}{x^{2}+2 x-3} \\
& \text { graph the denominator } \\
& y=x^{2}+2 x-3 \\
& =(x-1)(x+3) \\
& \rightarrow 2 \text { roes \& } x=1 \text { and } x=-3
\end{aligned}
$$

$$
\text { * ADS: } \left.\begin{array}{rl}
x & =-\frac{b}{2 a}=-1 \\
y_{v} & =(-1)^{2}+2(-1)-3 \\
y_{v} & =-4
\end{array}\right\} v(-1,-4)
$$

Your turn pg. 398

* ADS: $x=-b=-1$, $(1,-1)$

$$
* y \text {-int: } y=-3
$$

Your turn pg. 401
Homefun: 7.4 Pg. 403 \#1-6, Fab, 8ab, 9, 10-12, 17, 18

