7.4 Solving Systems by Substitution

* Important: This method is most useful when the coefficient on any of the variables in the system equals one.
ex. Solve the following system algebraically:

$$
\left\{\begin{array}{l}
2 x+y=3 \tag{1}\\
4 x+3 y=5
\end{array}\right.
$$

Step 2: substitute for $3-2 x$ in 2

$$
4 x+3(3-2 x)=5
$$

$$
\ldots \text { now solve for } x
$$

$$
\begin{gathered}
4 x+9-6 x=9 \\
\frac{-2 x}{-2}=\frac{-4}{-2} \\
x-2
\end{gathered}
$$

Step 1: isolate the variable
with wefficient $=1$
(1) $y=3-2 x$

Step 3: Substitute $x=2$ back into either equn to get y

$$
\begin{gathered}
\text { (1) } 2 x+y=3 \\
2(2)+y=3 \\
4+y=3-4 \\
y=-1 \\
\therefore(2,-1) \text { is the sol }
\end{gathered}
$$

* It is never a bad idea to verify your solution in both equations.

Test the solution in equation
(1) $L S=2 x+y$

$$
\begin{aligned}
& =2(2)+(-1) \\
& =3 \\
& =\text { RSV }
\end{aligned}
$$

$$
\therefore(2,-1) \text { is on line (1) }
$$

$\therefore(2,-1)$ M
$(2,-1)$
(2)

$$
\begin{aligned}
L S & =4 x+3 y \\
& =4(2)+3(-1) \\
& =8-3 \\
& =S=\text { RS }
\end{aligned}
$$

$$
\therefore(2,-1) \text { is also online (2) }
$$

be the sol (pt. of

* Note: If none of the coefficients equals one this method still works, but it is not always the best option.

ex. Solve the following system algebraically:

$$
\left\{\begin{array}{l}
2 x+3 y=12 \\
3 x-2 y=3
\end{array}\right.
$$

Step 1: Try to make a clever decision as to which variable to isolate. Sometimes it is impossible to avoid fractions.
Step 2: sub $y=4-\frac{2}{3} x$ into (2), (1) isolate y (there is no great
$3 x-2 y=3$
$3 x-2\left(4-\frac{2}{3} x\right)=3$
$0+8$
$\frac{3^{3}}{1 \times 3}-8+\frac{4}{3} x=3^{+8}$
$\frac{9}{3} x+\frac{4}{3} x=3+8$
$\left(\frac{3}{13}\right) \frac{13}{3} x=11\left(\frac{3}{13}\right)$

$$
x=\frac{33}{13}
$$

(1) isolatey (there is no great
$3 y=12-2 x \quad$ chone)
$\frac{3 y}{3}=\frac{12}{3}-\frac{2 x}{3}$
$y=4-\frac{2}{3} x$
Step 3: Sub $x=\frac{33}{13}$ into

$$
\begin{align*}
& 3\left(\frac{33}{13}\right)-2 y=3 \tag{2}\\
& \frac{99}{13}-2 y=\frac{3 \times 13}{1 \times 13}
\end{align*}
$$

$$
-2 y=\frac{39}{13}-\frac{99}{13}
$$

$$
y=\frac{30}{13}
$$

ex. Solve the following system algebraically:

$$
\frac{-2 y}{-2}=-\frac{60}{\frac{13}{2}}
$$

$$
\begin{equation*}
\int \frac{1}{2} x+\frac{2}{3} y=f 2 \tag{①}
\end{equation*}
$$

Step 2: $\sin b(2)$ into (1)
Step 1:
$\begin{aligned} & \text { Lone! or multiply each eqw } \\ & \text { (2) } y \\ & \text { Step 3. }\end{aligned} \frac{1}{4} x-\frac{5}{3}$ by a nuruber
that elminates
the fractions
Step 3:
$\frac{1}{2} x+\frac{2}{3}\left(\frac{1}{4} x-\frac{5}{3}\right)=12$
$\frac{1}{2} x+\frac{2}{12} x-\frac{10}{9}=12$
$\left[\begin{array}{l}\frac{1}{2} x+\frac{1}{6} x-\frac{10}{9}=12 \\ R^{R}\end{array}\right]^{18}$
$9 x+3 x-20=216+20$

$$
y=\frac{39 \div 3}{12 \div 3}
$$

$\frac{12 x}{12}=\frac{236}{12}$
$x=\frac{59}{3}$
$\sin x=\frac{59}{3}$ into (2)
$y=\frac{1}{4}\left(\frac{59}{3}\right)-\frac{5}{3} \times 4$

$$
y=\frac{59}{12}-\frac{20}{12}
$$

$$
y=\frac{13}{4}
$$

Homefun: Pg. 425 \# 4ac, 5ac, 7a, 8-12, 15, 19ac, 21

