7.5 Solving Linear Trigonometric Equations

Key points: Look for two things: size of reference angle, and location (CAST rule)

"SIMPLIFY" the angular argument (in brackets) before solving ** But you need to DE-SIMPLIFY afterwards**

Remember that there are infinite solutions to a trig function!!

Example 2:
$$T = \frac{2\pi}{4} = 2\pi$$

$$2\cos\left(x - \frac{\pi}{6}\right) = \frac{1}{2}, \quad 0 \le x \le 2\pi$$

$$\cos\left(x - \frac{\pi}{6}\right) = \frac{1}{2}$$

$$\left(x - \frac{\pi}{6}\right) = \cos\left(\frac{1}{2}\right)$$

$$\cos\left(x - \frac{\pi}{6}\right) = \frac{\pi}{2}$$

$$\cos\left(x - \frac{\pi}{6}\right) = \frac{$$

Example 3:

$$1 - \tan \left(2x + \frac{\pi}{2}\right) = 0, \quad 0 \le x \le 2\pi$$

$$+ \tan \left(2x + \frac{\pi}{2}\right) = +1$$

$$\left(2x + \frac{\pi}{2}\right) = \tan^{-1}\left(1\right)$$

$$\cot \tan^{-1}\left(1\right) = \frac{\pi}{4} \quad \text{and} \quad \frac{\pi}{4}$$

$$2x + \frac{\pi}{2} = \frac{\pi}{4}$$

$$2x = \frac{\pi}{4} - \frac{\pi}{4}$$

$$2x = \frac{\pi$$

 $d = \frac{v^2}{32} \sin 2\theta$

Example 4:

When a projectile leaves a starting point at an angle of elevation of θ with velocity v, the horizontal distance it travels is determined by:

Where d is measured in feet and v in feet per second.

An outfielder throws a ball at a speed of 75 miles per hour to the catcher who is 200 feet away. At what angle was the ball thrown?

Note: there are 5280 feet in a mile

plug into equ": 200 = (110) sin 20

$$\frac{200(32)}{10^2} = 5120$$

$$\frac{20}{2} = \frac{32}{2}$$
 $\frac{20}{2} = \frac{148}{2}$
 $\frac{20}{2} = \frac{148}{2}$

T=
$$\pi$$
 so we must add 180° to each answer of θ = 16° + 180° = (96° have no real is the ball is thrown θ 16° or π 40° the ball is thrown π 60° the π 60° the

Homefun:

page 426 # 3, 5, 6bdf, 9b, 10d, 11, 13